NumPy系统是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix))。
numpy
一个强大的N维数组对象Array
含  
稀疏编码 首先介绍一下“稀疏编码”这一概念。 早期学者在黑白风景照片中可以提取到许多16*16像素的图像碎片。而这些图像碎片几乎都可由64种正交的边组合得到。而且组合出一张碎片所需的边的数目很少,即稀疏的。同时在音频中大多数声音也可由几种基本结构组合得到。这其实就是特征的稀疏表达。即使用少量的基本特征来组合更加高层抽象的特征。在神经网络中即体现出前一层是未加工的像素,而后一层就是对这些像素的非线性
转载
2024-01-20 22:17:55
50阅读
一.前言在Pytorch Geometric中我们经常使用消息传递范式来自定义GNN模型,但是这种方法存在着一些缺陷:在邻域聚合过程中,物化x_i和x_j可能会占用大量的内存(尤其是在大图上)。然而,并不是所有的GNN都需要表达成这种消息传递的范式形式,一些GNN是可以直接表达为稀疏矩阵乘法形式的。在1.6.0版本之后,PyG官方正式引入对稀疏矩阵乘法GNN更有力的支持(torch-sparse中
转载
2023-10-15 11:05:14
1076阅读
项目github地址:bitcarmanlee easy-algorithm-interview-and-practice 欢迎大家star,留言,一起学习进步spark mllib模块中,矩阵的表示位于org.apache.spark.mllib.linalg包的Matrices中。而Matrix的表示又分两种方式:dense与sparse。在实际场景应用场景中,因为大数据本身的稀疏性,spar
转载
2023-12-10 08:39:37
53阅读
第13个方法torch.spares_coo_tensor(indices, values, siez=None,*, dtype=None, requires_grad=False)->Tensor此方法的意思是创建一个Coordinate(COO) 格式的稀疏矩阵,返回值也就h是一个tensor稀疏矩阵指矩阵中的大多数元素的值都为0,由于其中非常多的元素都是0,使用常规方法进行存储非常的
转载
2023-11-29 01:25:22
192阅读
问题: 现在有一个五子棋盘,如下,需要你进行存盘,然后以后在玩的时候还可以继续上一盘,你可以直接把这个11X11的棋盘直接保存到一个二维数组中,然后写进文件夹,但是你会发现,此时11X11的棋盘只有3个数据,其他都是无用的,占用内存空间,这显然转换成稀疏矩阵在存储,明显可以省略很多空间,接下来我们用Java代码模拟把它转换成稀疏矩阵,再从稀疏矩
转载
2024-01-20 21:49:52
107阅读
pytorch稀疏矩阵(torch.sparse) Pytorch稀疏矩阵处理 稀疏矩阵存储方式 1. COO 2. CSR/CSC 3. LIL 稀疏矩阵的处理 1.torch.sparse.FloatTensor类 2.torch.sparse.mm 3.torch.sparse.sum 参考资料 Pytorch稀疏矩阵处理 本文将简单介绍稀疏矩阵常用的存储方式和Pytorch中稀疏矩阵的处理
转载
2023-09-25 10:27:27
337阅读
写在开头在前几篇文章中,我们已经深入了解了Scipy库的基础功能和在数值计算、优化、信号处理等领域的应用。本文将进一步探讨Scipy库中的高级功能,专注于稀疏矩阵处理和高级插值技术。这些功能在实际数据分析中具有广泛的应用,能够处理大规模、高维度的数据集,并在空间数据插值等场景中发挥重要作用。1 稀疏矩阵处理1.1 Scipy.sparse 模块简介在数据科学和工程领域,我们常常会面对大规模的数据集
Fortran 处理稀疏矩阵稀疏矩阵Ax=b在Fortran里面使用稀疏矩阵最基础的是用BLAS(Basic Linear Algebra Subprograms),但是在后来的MKL库中有集成BLAS。如果是解Ax=b的线性方程组,建议使用Pardiso,同样在MKL库中有集成,可以去官网查找资料。 目前查到的除上述表格中的MKL库函数之外,还有SPARSEKIT库函数,但是该库函数是在GNU下
pytorch geometric中为何要将稀疏邻接矩阵写成转置的形式adj_t一开始接触pytorch geometric的小伙伴可能和我有一样的疑问,为何数据中邻接矩阵要写成转置的形式。直到看了源码,我才理解作者这样写,是因为信息传递方式的原因,这里我跟大家分享一下。edge_index首先pytorch geometric的边信息可以有两种存储模式,第一种是edge_index,它的shap
转载
2023-12-21 13:22:10
71阅读
标量简单操作 长度 向量简单操作 长度 其他操作 矩阵简单操作 乘法(矩阵*向量) 乘法(矩阵*矩阵) 范数 取决于如何衡量b和c的长度常见范数矩阵范数:最小的满足的上面公式的值Frobenius范数 特殊矩阵对称和反对称 正
转载
2024-08-15 13:50:15
52阅读
实现稀疏矩阵相乘C/C++ 1、问题描述:已知稀疏矩阵A(m1,n1)和B(m2,n2),求乘积C(m1,n2)。A=|3 0 0 7| B=|4 1| C=|12 17|
|0 0 0 -1| |0 0| |0 -2|
|0 2 0 0| |1 -1| |0 0|
转载
2024-10-09 21:21:23
66阅读
在现代深度学习中,稀疏矩阵是处理大规模数据集和高维特征不可或缺的一部分。PyTorch作为流行的深度学习框架,提供了强大的稀疏矩阵处理能力,这使得在计算效率和内存占用方面具有显著优势。本文将探讨如何高效地实现稀疏矩阵乘法,并揭示其在实际应用中的特点。
### 适用场景分析
稀疏矩阵乘法在多个场景中具有广泛的应用,例如推荐系统、自然语言处理以及图神经网络等。以下是具体的场景匹配度分析:
```
1 稀疏矩阵介绍 在networkx包中,很多运算返回的是sparse matrix(如nx.laplacian_matrix),这是稀疏矩阵格式。隶属于scipy.sparseimport networkx as nx
G = nx.Graph()
G.add_node(1)
G.add_nodes_f
转载
2023-11-23 22:32:56
253阅读
# PyTorch将稠密矩阵转换为稀疏矩阵
在机器学习和深度学习中,数据的表示方式往往决定了模型的性能。在处理大规模数据时,稀疏矩阵可以显著减少内存和计算负担。因此,了解如何在PyTorch中将稠密矩阵转换为稀疏矩阵是非常重要的。本文将详细介绍此过程。
## 步骤流程
以下是将稠密矩阵转换为稀疏矩阵的步骤流程表:
| 步骤编号 | 步骤描述
Tricks1. torch.sparse.FloatTensor(position, value)稀疏张量表示为一对稠密张量:一个值张量和一个二维指标张量(每一维中存储多个值)。一个稀疏张量可以通过提供这两个张量,以及稀疏张量的大小来构造2. 查看list的维度信息利用np.array()转换成nadrray类型数据,输出shape属性即可3. torch.mul()和torch.mm()的区别
转载
2023-11-26 11:55:34
404阅读
# 如何实现“矩阵转化成稀疏矩阵”在PyTorch中的操作
在深度学习和数据科学的应用中,矩阵操作是很常见的任务。尤其是当处理大型数据集时,稀疏矩阵能有效节省存储空间和计算资源。在本篇文章中,我们将一起学习如何使用PyTorch将一个普通矩阵转换为稀疏矩阵。
## 项目流程
首先,我们需要了解实现这一目标的整体流程。下面是整个过程的步骤表:
| 步骤 | 操作
原创
2024-09-16 05:16:20
291阅读
1. coo存储方式采用三元组(row, col, data)(或称为ijv format)的形式来存储矩阵中非零元素的信息。 coo_matrix的优点:有利于稀疏格式之间的快速转换(tobsr()、tocsr()、to_csc()、to_dia()、to_dok()、to_lil();允许重复项(格式转换的时候自动相加);能与CSR / CSC格式的快速转换 coo_matrix的缺点:不能直
转载
2024-02-04 21:41:53
132阅读
稀疏矩阵(Sparse Matirx):一个矩阵的大部分元素为零 对于稀疏矩阵而言,实际存储的数据项很少,如果用传统的二维数组的方式来存储稀疏矩阵,会十分浪费计算机的内存空间。C=[[None]*N for row in range(N)]提高内存空间利用率的方法就是利用三项式(3-tuple)的数据结构,把每一个非零项以(i,j,item-value)来表示。 就是假如一个稀疏矩阵有n个非零项,
转载
2024-03-02 10:25:33
293阅读
# PyTorch中的稀疏矩阵相乘
在深度学习和机器学习的世界中,稀疏矩阵是一种非常重要的数据结构。稀疏矩阵是指大部分元素为零的矩阵,这种结构在处理图像、文本、推荐系统等任务时都很常见。在PyTorch中,我们可以直接使用稀疏矩阵来优化存储和计算效率。本文将介绍如何在PyTorch中进行稀疏矩阵相乘,并提供相应的代码示例。
## 什么是稀疏矩阵?
稀疏矩阵是矩阵中大多数元素为零的矩阵。与之相