迄今为止,看到的函数中,卷积的操作发生在OpenCV函数的内部。理论上,图像卷积就是将内核与图像覆盖区域对应位置相乘之后求和。从调用函数上来看,它需要一个数组参数来描述内核。在实践层面,有一个重要的微妙因素会对结果产生重大影响。微妙之处在于一些内核是可分离的,而另一些则不是。 图1
图1(A)是可分离的; 它可以表示为两个一维卷积(B和C);D是一个不可分割内核的例子。可分离
在现代移动应用开发中,人脸检测技术得到了广泛的应用,特别是在 Android 平台上,OpenCV 为开发者提供了强大的计算机视觉功能。面部遮挡检测作为人脸检测中的一个重要方面,能够有效提高图像处理的准确性和鲁棒性。本文将详细探讨如何利用 Android 平台结合 OpenCV 实现面部遮挡检测的全过程。
### 背景描述
近年来,随着社交媒体和移动应用的兴起,面部识别和检测技术愈发收到关注。
目录程序简介程序/数据集下载代码分析程序简介程序调用Python的opencv模块,根据拉普拉斯变换计算像素方差来作为图片的模糊程度和遮挡程度的指标值,然后根据参考值构建正态分布,根据3西格玛准则,判断图片是否异常,最终实现了模糊检测和遮挡检测功能。但是本程序使用的数据集为从VOC2007随机选择的图片,对于固定场景,最好选择对应场景的图片集,以及调整正确的参数。拉普拉斯变换是工程数学中常用的一种
转载
2024-03-07 17:47:59
351阅读
目录 综述:通用对象检测中的遮挡处理1.简介2.目标检测的应用3.数据
转载
2024-06-11 14:57:36
517阅读
目录一、图像读取与显示二、图像预处理高斯模糊的原理与算法Canny边缘检测三、图像裁剪四、绘制形状和添加文本五、透视变换六、颜色检测七、形状检测和轮廓检测八、人脸识别一、图像读取与显示#include<opencv2/imgcodecs.hpp>
#include<opencv2/highgui.hpp>
#include<opencv2/imgproc.hpp>
论文标题:Behind the Curtain: Learning Occluded Shapes for 3D Object DetectionAAAI2022 南加大 这篇文章的主题思想是认为现在的基于点云的目标检测方法实际上都是2.5D的方法而非3d的方法:原因是3d点云虽然具有3d的信息,但是点云检测到的物体往往是存在遮挡问题的。 作者将物体上的点云遮挡情况划分为三个部分: 外部遮挡:即目
页面布局问题:假设高度默认100px ,请写出三栏布局,其中左栏、右栏各为300px,中间自适应。分析:初学者想到的答案有两种:方法1:浮动方法2:绝对定位但要求你能至少写出三四种方法,才算及格。剩下的方法如下:方法3:flexbox。移动开发里经常用到。方法4:表格布局table。虽然已经淘汰了,但也应该了解。方法5:网格布局 grid方法1、浮动:左侧设置左浮动,右侧设置右浮动即可,中间会自动
在看了文档[2,3]后开始对照着看OpenCV代码,看得晕头转向啊。又搜了网上的一些帖子,先针对自己的理解做笔记如下,日后好在此基础上补充。OpenCV人脸检测之数据结构:所有的结构都代表一个级联boosted Haar分类器。级联有下面的等级结构:Cascade:
Stage1:
Classifier11:
Feature11
Classifier12:
Feature12
...
Stage2
目录参考一、直线检测1.1 霍夫变换直线检测——HoughLinesP1.1.1原理1.1.2 HoughlinesP()函数1.1.3 代码1.1.4 检测效果1.2 FLD算法1.2.1 报错AttributeError: module 'cv2.cv2' has no attribute 'ximgproc'1.2.2 FLD有关函数1.2.3 代码实现1.2.4 检测效果二、增强算法 参
转载
2023-08-04 16:06:00
439阅读
环境:Python3.8 和 OpenCV内容:Hough圆检测将直角坐标系中的一个圆映射为新坐标系中的一个点,对于原直角坐标系中的每一个圆,可以对应(a, b, r) 这样一个点,这个点即为新三维中的点。标准法实现步骤: 1.获取原图像的边缘检测图像;2.设置最小半径、最大半径和半径分辨率等超参数;3.根据转化后空间的圆心分辨率等信息,设置计数器N(a, b, r);4.对边缘检测图像的每个白色
转载
2023-12-02 21:01:28
344阅读
直线检测直线检测可以通过OpenCV的HoughLines和HoughLinesP函数来完成,它们仅有的差别是:第一个函数使用标准的Hough变换,第二个函数使用概率Hough变换,即只通过分析点的子集并估计这些点都属于一条直线的概率,这在计算速度上更快。函数原型:HoughLinesP(image, rho, theta, threshold, lines=None, minLineLength
转载
2023-12-27 21:31:33
347阅读
目录c++检测垂直线 检测所有线:python RANSAC直线检测c++C++: void HoughLinesP(InputArray image, OutputArray lines, double rho, double theta, int threshold, double minLineLength=0, double maxLineGap=0 )第一个参数,InputAr
转载
2024-01-08 17:04:27
116阅读
缺陷识别简介:这个项目是我的本科毕业设计,主要针对传送带上的木质圆形工件的缺陷识别和分类,并且进行工件的计数和缺陷工件的计数。这里我主要是识别污渍和划痕缺陷类型污渍:划痕:最后的成果sum:为工件的总个数scratch_num:为含有划痕工件的总个数blot_num:为含有污渍工件的总个数黄颜色圈住的缺陷为划痕蓝颜色圈住的缺陷为污渍简单思路通过边缘检测,得到每个工件的坐标,并计算出工件的中心来标记
转载
2023-10-10 11:01:20
490阅读
直线检测 cv2.HoughLinesP()函数原型:HoughLinesP(image, rho, theta, threshold, lines=None, minLineLength=None, maxLineGap=None)image: 必须是二值图像,推荐使用canny边缘检测的结果图像;rho:线段以像素为单位的距离精度,double类型的,推荐用1.0theta: 线段以弧度为单位
转载
2023-10-11 09:23:32
363阅读
使用dlib,OpenCV和Python进行人脸识别--检测眼睛,鼻子,嘴唇和下巴前期文章我们分享了如何使用python与dlib来进行人脸识别,本期我们就来更细的来了解一下人脸识别的内容如下图,dlib人脸数据把人脸分成了68个数据点,从图片可以看出,人脸识别主要是识别:人眉,人眼,人鼻,人嘴以及人脸下颚边框,每个人脸的部位都有不同的数据标签从1-68当我们识别出人脸的这68个点,
转载
2024-02-24 14:10:15
118阅读
文章目录1.前言2.调用摄像头进行实时canny边缘检测3.三种检测方法的分析Sobel边缘检测**Laplacian边缘检测**Canny边缘检测4.参考博文 1.前言计算机中的目标检测与人类识别物体的方式相似。作为人类,我们可以分辨出狗的形象,因为狗的特征是独特的。尾巴、形状、鼻子、舌头等特征综合在一起,帮助我们把狗和牛区分开来。同样,计算机能够通过检测与估计物体的结构和性质相关的特征来识别
转载
2023-10-28 11:51:18
269阅读
Python部落(python.freelycode.com)组织翻译,禁止转载,欢迎转发。利用Opencv中的Houghline方法进行直线检测---python语言在图像处理中,霍夫变换用来检测任意能够用数学公式表达的形状,即使这个形状被破坏或者有点扭曲。下面我们将看到利用HoughLine算法来阐述霍夫变化进行直线检测的原理,把此算法应用到特定图像的边缘检测是可取的。Houghline算法基
转载
2024-03-13 22:12:52
107阅读
直线检测原理核心要点:图像坐标空间、参数空间、极坐标参数空间 -> (极坐标)参数空间表决给定一个点,我们一般会写成y=ax+b的形式,这是坐标空间的写法;我们也可以写成b=-xa+y的形式,这是参数空间的写法。也就是说,给定一个点,那么经过该点的直线的参数必然满足b=-xa+y这一条件,也就是必然在参数空间中b=-xa+y这条直线上。如果给定两个点,那么这两点确定的唯一的直线的参数,就是参
转载
2024-02-26 14:00:43
26阅读
边缘检测是一种图像处理技术,用于识别图像中目标或区域的边界(边缘)。边缘是图像中最重要的特征之一。我们通过图像的边缘来了解图像的基本结构。因此,计算机视觉处理管道在应用中广泛地使用边缘检测。1.如何检测边缘?边缘的特征是像素强度的突然变化。为了检测边缘,我们需要在邻近的像素中寻找这些变化。来吧,让我们探讨一下OpenCV中可用的两种重要边缘检测算法的使用:Sobel边缘检测和Canny边缘检测。我
转载
2023-08-16 23:27:49
320阅读
简介:1.霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法。主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等)。最基本的霍夫变换是从黑白图像中检测直线(线段)。2.Hough变换的原理是将特定图形上的点变换到一组参数空间上,根据参数空间点的累计结果找到一个极大值对应的解,那么这个解就对应着要寻找的几何形
转载
2024-08-19 19:15:26
318阅读