Mathf、Vector2、Vector3等许多类都有方法。以Vector3为例:MoveTowards函数原型为:public static Vector3 MoveTowards(Vector3 current, Vector3 target, float maxDistanceDelta);作用是将当前current移向目标target。(对Vector3是沿两点间直线) maxDis
在游戏开发中,如何移动物体?是我们需要思考的事情。 Unity 引擎也提供了众多的方法,每个开发者的使用习惯也各不相同,所以往往不是很清楚在这种场景下哪种方式最好的或者最有效的。 那么,这篇文章,我想分享一下移动物体的一些方法和优缺点。项目地址 如何优雅地移动物体?8个方法 向某个方向移动Transform.Position众所周知,我们可以给对象的Transform组件赋予一个坐标来决定其
算法对于缩放比例较小的情况是完全可以接受的,令人信服的。一般的,缩小0.5倍以上或放大3.0倍以下,对任何图像都是可以接受的。最邻近(近邻取样法):   最临近的的思想很简单。对于通过反向变换得到的的一个浮点坐标,对其进行简单的取整,得到一个整数型坐标,这个整数型坐标对应的像素就是目的像素的像素,也就是说,取浮点坐标最邻近的左上角点(对于DIB是右上角,因为它的扫描行是逆序存储的)
本来预计本系列博客只有俩篇,但是考虑到后面的知识点比较重要,所以拆开为俩篇博客来介绍,一篇理论和一篇例子。 下面开始本篇博客的内容。本篇博客主要是介绍器(TimeInterpolator)和估器(TypeEvaluator)根据参考 郭霖属性动画的系列博客 还有配合 任玉刚-Android艺术开发探索-Android动画深入分析 决定先介绍估器(TypeEvaluator)首先看一下A
算法
原创 2023-01-09 17:15:59
314阅读
很多时候在Unity的一些场景中中会用到平滑。比如我有一个Animator状态树,动画通过一个float数值来控制。但是数值是瞬间变化的,动画如果也是瞬间切换,没有过渡效果的话,看着就会很生硬。所以就需要对float进行线性平滑。Mathf.LerpUnity官方是有线性平滑的函数的,即Lerp函数Unity中有很多数据都可以通过Lerp来进行线性平滑,不过我这次只打算说一下Mat
 interpolatetorch.nn.functional.interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None)根据给定的size或scale_factor参数来对输入进行下/上采样使用的算法取决于参数mode的设置支持目前的temporal(1D, 如向量数据),
转载 2023-09-05 22:05:46
154阅读
参考《数值分析与科学计算》一书。 matlab里有大量关于的命令。1、介绍vander()和fliplr()两个与范德蒙有关的函数 >> x =[0 pi/2 pi 3*pi/2];v =vander(x) v = 0 0 0 1.0000 3.8758 2.4674 1.5708
有两个向量,我们想从起始向量平滑的过度到终止向量,那么中间的向量就可以通过的方式得到。这在图形学中图形旋转或者机器人中物体姿态旋转都可以用到。有三种方法:Lerp,NLerp和SLerp。Lerp为线性,公式如下:NLerp为线性后归一化,公式如下:SLerp为球面,公式如下:公式中的v0和v1就在起始与结束向量,换成四元数同理。t为的中间,球面中theta为两个向量间的
转载 2023-06-15 23:24:10
214阅读
       上篇讲了nearest-neighbor(最近邻)。这篇说cubic interpolation(三次),之前说过,就是用已知的点模拟一个方程,然后求未知点。之前讲的是线性的。cubic interpolation就是求一个三次的方程。它的思想就是把已知的数分为一个一个小区间,人拟合到曲线上去。就是一个多分段函数高阶函数(此处的
原理何为线性?        就是在两个数之间插入一个数,线性原理图如下在位置 x 进行线性,插入的为f(x) 各种法        法的第一步都是相同的,计算目标图(dstImage)的坐标点对应原图(srcImage)中哪个坐标点来填充,计算公式为:srcX = dstX * (
1.学习目标最近邻算法双线性算法掌握OpenCV框架下算法API的使用 ,cv.resize()各项参数及含义2.最近邻算法 最近邻,是指将目标图像中的点,对应到源图像中后,找到最相邻的整数点,作为后的输出。如下图举例缺点: 用该方法作放大处理时,在图象中可能出现明显的块状效应3 .双线性  在讲双线性之前先看以一下线性,线性多项式为:f(x)=ax+b  
转载 2023-08-05 14:00:35
222阅读
C#扩展方法C#扩展方法第一个参数指定该方法作用于哪个类型,并且该参数以 this 修饰符为前缀。public static class ExtendMethods { public static tween DoRotate(this Transform transform, Vector3 target, float time) { tween myTween = new tween("DoRotate", transform, target,
原创 2022-11-26 00:01:51
403阅读
一、IDW反距离权重IDW反距离权重介绍反距离权重 (IDW) :彼此距离较近的事物要比彼此距离较远的事物更相似。当为任何未测量的位置预测时,反距离权重法会采用预测位置周围的测量值。与距离预测位置较远的测量值相比,距离预测位置最近的测量值对预测的影响更大。反距离权重法假定每个测量点都有一种局部影响,而这种影响会随着距离的增大而减小。由于这种方法为距离预测位置最近的点分配的权重较大,
图像就是利用已知邻近像素点的灰度(或RGB图像中的三色)来产生未知像素点的灰度,以便由原始图像再生出具有更高分辨率的图像。 图像常常用在图像的放缩,旋转等变换中。常用的运算有三种:最邻近、双线性和立方卷积(cubic运算)。 假设变换(放缩,旋转等等)前的图像为S,变换后的图像为T。1. 最邻近【基本思想】 变换后图像T中像素p(x,y) 映射在原图像S中的
最近在准备论文开题,用到了腾讯定位大数据,数据是腾讯定位平台上爬取下来的,整理成Excel格式,导入arcgis中进行分析数据刚爬取下来是这样的,存储方式是txt格式,而且腾讯定位数据是5分钟更新一次,所以爬取下来以后还要对数据进行整理,比如想获取8::00~9:00的数据,就要将每个点8::00~9:00每隔5分钟的定位次数相加,然后整理到Excel表格中,这部分我还没想好要怎么处理,初步想法是
数据数据可以根据有限个点的取值状况,合理估算出附近其他点的取值,从而节约大量的实验和测试资源,节省大量的人力、物力和财力。引例-零件加工问题>> x=[0 3 5 7 9 11 12 13 14 15]; >> y=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6]; >> x1=0:0.1:15; >> y1=i
前言       数字信号和图像处理中经常用到的样本位置的移动主要是通过实现的。根据采样定理,在满足1)信号是带限的,即最高频率有界;2)满足奈奎斯特采样率,即实信号的采样率高于最高频率的两倍、复信号采样率高于信号带宽。以上两个条件时,就可以通过卷积重建初始信号。因此,可以通过卷积实现其中,h(x)称为因子或核。i处的样本
官方文档链接:https://docs.scipy.org/doc/scipy-1.3.0/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1dscipy库中可以通过interp1d类来实现一维照例还是官方文档的翻译与解释类原型:class scipy.interpolate.in
转载 2023-06-19 14:29:03
312阅读
假设变换后的图像(x,y)处投影大原图像的坐标点(u,v)图像主要用三种方法求得变换后的像素:1、最邻近元法  这是最简单的一种方法,不需要计算,在待求象素的四邻象素中,将距离待求象素最近的邻象素灰度赋给待求象素。设i+u, j+v(i, j为正整数, u, v为大于零小于1的小数,下同)为待求象素坐标,则待求象素灰度的 f(i+u, j+v) 如下图所示:  如果(
  • 1
  • 2
  • 3
  • 4
  • 5