插值算法对于缩放比例较小的情况是完全可以接受的,令人信服的。一般的,缩小0.5倍以上或放大3.0倍以下,对任何图像都是可以接受的。最邻近插值(近邻取样法): 最临近插值的的思想很简单。对于通过反向变换得到的的一个浮点坐标,对其进行简单的取整,得到一个整数型坐标,这个整数型坐标对应的像素值就是目的像素的像素值,也就是说,取浮点坐标最邻近的左上角点(对于DIB是右上角,因为它的扫描行是逆序存储的)
插值算法
原创
2023-01-09 17:15:59
319阅读
interpolatetorch.nn.functional.interpolate(input, size=None, scale_factor=None, mode='nearest', align_corners=None)根据给定的size或scale_factor参数来对输入进行下/上采样使用的插值算法取决于参数mode的设置支持目前的temporal(1D, 如向量数据),
转载
2023-09-05 22:05:46
154阅读
参考《数值分析与科学计算》一书。 matlab里有大量关于插值的命令。1、介绍vander()和fliplr()两个与范德蒙有关的函数 >> x =[0 pi/2 pi 3*pi/2];v =vander(x)
v =
0 0 0 1.0000
3.8758 2.4674 1.5708
1.学习目标最近邻插值算法双线性插值算法掌握OpenCV框架下插值算法API的使用 ,cv.resize()各项参数及含义2.最近邻插值算法 最近邻插值,是指将目标图像中的点,对应到源图像中后,找到最相邻的整数点,作为插值后的输出。如下图举例缺点: 用该方法作放大处理时,在图象中可能出现明显的块状效应3 .双线性插值 在讲双线性插值之前先看以一下线性插值,线性插值多项式为:f(x)=ax+b
转载
2023-08-05 14:00:35
224阅读
上篇讲了nearest-neighbor(最近邻插值)。这篇说cubic interpolation(三次插值),之前说过,插值就是用已知的点模拟一个方程,然后求未知点。之前讲的插值是线性的。cubic interpolation就是求一个三次的方程。它的思想就是把已知的数分为一个一个小区间,人拟合到曲线上去。就是一个多分段函数高阶函数(此处的
转载
2023-07-23 21:36:54
281阅读
有两个向量,我们想从起始向量平滑的过度到终止向量,那么中间的向量就可以通过插值的方式得到。这在图形学中图形旋转或者机器人中物体姿态旋转都可以用到。有三种方法:Lerp,NLerp和SLerp。Lerp为线性插值,公式如下:NLerp为线性插值后归一化,公式如下:SLerp为球面插值,公式如下:公式中的v0和v1就在起始与结束向量,换成四元数同理。t为插值的中间值,球面插值中theta为两个向量间的
转载
2023-06-15 23:24:10
214阅读
原理何为线性插值? 插值就是在两个数之间插入一个数,线性插值原理图如下在位置 x 进行线性插值,插入的值为f(x) 各种插值法 插值法的第一步都是相同的,计算目标图(dstImage)的坐标点对应原图(srcImage)中哪个坐标点来填充,计算公式为:srcX = dstX * (
转载
2023-08-04 11:21:13
133阅读
数据插值数据插值可以根据有限个点的取值状况,合理估算出附近其他点的取值,从而节约大量的实验和测试资源,节省大量的人力、物力和财力。引例-零件加工问题>> x=[0 3 5 7 9 11 12 13 14 15];
>> y=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6];
>> x1=0:0.1:15;
>> y1=i
图像插值就是利用已知邻近像素点的灰度值(或RGB图像中的三色值)来产生未知像素点的灰度值,以便由原始图像再生出具有更高分辨率的图像。 图像插值常常用在图像的放缩,旋转等变换中。常用的插值运算有三种:最邻近插值、双线性插值和立方卷积插值(cubic运算)。 假设变换(放缩,旋转等等)前的图像为S,变换后的图像为T。1. 最邻近插值【基本思想】 变换后图像T中像素p(x,y) 映射在原图像S中的
转载
2023-11-07 12:40:27
134阅读
一、IDW反距离权重插值IDW反距离权重插值介绍反距离权重 (IDW) 插值:彼此距离较近的事物要比彼此距离较远的事物更相似。当为任何未测量的位置预测值时,反距离权重法会采用预测位置周围的测量值。与距离预测位置较远的测量值相比,距离预测位置最近的测量值对预测值的影响更大。反距离权重法假定每个测量点都有一种局部影响,而这种影响会随着距离的增大而减小。由于这种方法为距离预测位置最近的点分配的权重较大,
本期推文,我们将介绍IDW(反距离加权法(Inverse Distance Weighted)) 插值的Python计算方法及插值结果的可视化绘制过程。主要涉及的知识点如下:IDW简介自定义Python代码计算空间IDW分别使用plotnine、Basemap进行IDW插值结果可视化绘制IDW简介反距离权重 (IDW) 插值假设:彼此距离较近的事物要比彼此距离较远的事物更相似。当为任何未测量的位置
转载
2023-07-03 18:53:38
349阅读
前言 数字信号和图像处理中经常用到的样本位置的移动主要是通过插值实现的。根据采样定理,在满足1)信号是带限的,即最高频率有界;2)满足奈奎斯特采样率,即实信号的采样率高于最高频率的两倍、复信号采样率高于信号带宽。以上两个条件时,就可以通过卷积重建初始信号。因此,插值可以通过卷积实现其中,h(x)称为插值因子或插值核。i处的样本
目录一. 绑定语法: 学名: 插值语法 Interpolation二. 指令(directive)1. v-bind2. v-show3. v-if和v-else4. v-else-if5. v-for? 扩展:this判断—8种指向⬛ 总结:知识点提炼一. 绑定语法: 学名: 插值语法 Interpolation1. 什么是: 在界面中标记哪里可能发生变化的特殊的语法2. 何时: 今后,只要一个
图像放大并进行BiCubic插值 Matlab/C++代码
BiCubic
双三次插值
BiCubic插值原理:双三次插值又称立方卷积插值。三次卷积插值是一种更加复杂的插值方式。该算法利用待采样点周围16个点的灰度值作三次插值,不仅考虑到4 个直接相邻点的灰度影响,而且考虑到各邻点间灰度值变化率的影响。三次运算可以得到更接近高分辨率图像的放大效果,但也导致了运算量的急剧增加。这种算
假设变换后的图像(x,y)处投影大原图像的坐标点(u,v)图像主要用三种插值方法求得变换后的像素:1、最邻近元法 这是最简单的一种插值方法,不需要计算,在待求象素的四邻象素中,将距离待求象素最近的邻象素灰度赋给待求象素。设i+u, j+v(i, j为正整数, u, v为大于零小于1的小数,下同)为待求象素坐标,则待求象素灰度的值 f(i+u, j+v) 如下图所示: 如果(
百度百科定义插值:在离散数据的基础上插补连续函数,使得这条连续曲线经过全部离散点,同时也可以估计出函数在其他点的近似值。样条插值:一种以 可变样条 样条插值法简单理解,就是每两个点之间确定一个函数,这个函数就是一个样条,函数不同,样条就不同,所以定义中说 可变样条,然后把所有样条分段结合成一个函数,就是最终的插值函数。 思路1 - 线性样条两点确定一条直线,我们可以在每两点间画
转载
2023-11-05 16:49:11
95阅读
PIL、skimage、OpenCV中三次插值对比Python三种图像处理库,PIL、skimage、OpenCV中三次插值对比对比前的准备OpenCV插值(cubic)PIL插值(bicubic)Skimage插值(bicubic)总结 Python三种图像处理库,PIL、skimage、OpenCV中三次插值对比 &nbs
转载于 数字图像处理(九)插值算法之二数字图像处理(九)插值算法之二在CFA去马赛克和图像旋转放大时都需要进行插值运算。在空间域内,插值是卷积计算。当已知数据点位于整数格点上时,插值函数h(x)应该有:h(0)=1;h(n)=0; n是非零整数。在频率域,以步长1采样的图像中如果含有高于1/2的频率分量将会产生混叠。空间域内的卷积对应在频率域内的相乘运算,可以从中判断插值算法的特性这是几类插值函数
最近在准备论文开题,用到了腾讯定位大数据,数据是腾讯定位平台上爬取下来的,整理成Excel格式,导入arcgis中进行分析数据刚爬取下来是这样的,存储方式是txt格式,而且腾讯定位数据是5分钟更新一次,所以爬取下来以后还要对数据进行整理,比如想获取8::00~9:00的数据,就要将每个点8::00~9:00每隔5分钟的定位次数相加,然后整理到Excel表格中,这部分我还没想好要怎么处理,初步想法是