GMM估计是用于解决内生性问题的一种方法,除此之外还有TSLS两阶段最小二乘回归。如果存在异方差GMM的效率会优于TSLS,但通常情况下二者结论表现一致,很多时候研究者会认为数据或多或少存在异方差问题,因而可直接使用GMM估计。内生变量是指与误差项相关的解释变量。对应还有一个术语叫‘外生变量’,其指与误差项不相关的解释变量。产生内生性的原因通常在三类,分别说明如下:内生性问题的判断上,通常是使用D
文章目录任务一、Pytorch基本操作考察1.1 任务内容1.2 任务思路及代码1.3 实验11.3.1实验结果分析1.4 实验21.5 实验31.5.1 结果分析二、动手实现 logistic 回归2.1 任务内容2.2 任务思路及代码2.2.1 从0实现 logistic 回归2.3实验1结果分析2.3.1实验数据说明2.3.2训练集结果分析2.3.2训练集结果分析2.3.3 测试集结果分析
21、请简要说说EM算法。@tornadomeet,本题解析来源:有时候因为样本的产生和隐含变量有关(隐含变量是不能观察的),而求模型的参数时一般采用最大似然估计,由于含有了隐含变量,所以对似然函数参数求导是求不出来的,这时可以采用EM算法来求模型的参数的(对应模型参数个数可能有多个),EM算法一般分为2步:  E步:选取一组参数,求出在该参数下隐含变量的条件概率值;  M步:结合E步求出的隐含变
1.矩估计  矩估计是什么呢?简单的说,就是用样本矩代替总体矩进行统计推断的方法。   一个最基础的例子是正态总体的参数估计问题。如果,如何估计和呢? 统计学一般会介绍两种估计方法:极大似然估计和矩估计。总体矩条件: 样本矩条件: = Op(1) ;1.1 OLS估计OLS估计是矩估计的一个特例。OLS估计的公式为:由于和无关,则其中是总体矩条件,对应的样本矩条件为:,得到: 另一种推导方法:1.
前言因为最近项目上的需要,才发现MATLAB的统计工具箱中的参数估计函数,觉得很简单很好用,现在把所有的参数估计函数整理一下,并在最后面附上调用示例。参与人员由于时间关系,这篇随笔是两个人一起整理的,下面是分工列表:文字整理:鹏老师      博客:代码整理:CL_Pan_DUT  博客:参数估计函数参数估计式统计推断问题,即当总体分布的数学形式已知,用有限
转载 2023-12-31 21:58:28
11阅读
# R语言中的GMM参数估计 在统计学和机器学习中,参数估计是一个重要的任务。特别是在处理复杂数据时,使用适当的估计方法可以显著提高模型的性能。广义方法矩(GMM)是一种强大的参数估计技术,它不仅具有较高的灵活性,而且适用于不同类型的模型。在本文中,我们将探讨如何在R语言中实施GMM参数估计,并通过具体代码示例来帮助您理解这一过程。 ## GMM概述 GMM的基本思想是通过样本矩与理论矩之间
EM最大期望算法(Expectation-maximization algorithm,又译为期望最大化算法),是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐性变量。最大期望算法经过两个步骤交替进行计算:第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值。M步上找到的
 高斯混合模型GMM是一个非常基础并且应用很广的模型。对于它的透彻理解非常重要。网上的关于GMM的大多资料介绍都是大段公式,而且符号表述不太清楚,或者文笔非常生硬。本文尝试用通俗的语言全面介绍一下GMM,不足之处还望各位指正。首先给出GMM的定义这里引用李航老师《统计学习方法》上的定义,如下图:定义很好理解,高斯混合模型是一种混合模型,混合的基本分布是高斯分布而已。第一个细节:为什么系数
GMP模型GMP模型的演进过程1)GM模型在Go1.0版本是Go的调度方式为GM模式,但是其有几个严重不足:限制了Go并发编程的的伸缩性 单一全局互斥锁和集中状态存储的存在导致所有goroutine相关操作都要上锁 goroutine的传递问题:经常在M之间传递“可运行”的goroutine回导致调度延迟增大,带来额外的性能损耗 每个M都做内存缓存,导致内存占用过高,数据局部性较差。 因系统调用而
教程列表:4固定效应变截距面板数据模型Stata软件操作教程7Hausman固定效应随机效应检验-面板数据模型Stata软件操作教程3混合面板数据模型-Stata软件操作教程1数据输入-面板数据模型Stata软件操作教程8面板单位根LLC、IPS检验1-Stata软件操作教程8面板单位根检验2-Stata软件操作教程9变系数面板数据模型1-Stata软件操作教程9变系数面板数据模型2-Stata软
用于函数估计的非参数方法主要有核密度估计、局部多项式回归估计等。非参的函数估计的优点在于稳健,对模型没有什么特定的假设,只是认为函数光滑,避免了模型选择带来的风险;但是,表达式复杂,难以解释,计算量大是非参的一个很大的毛病。所以说使用非参有风险,选择需谨慎。核密度估计(kernel density estimation)是在概率论中用来估计未知的密度函数,属于非参数检验方法之一,由Rosenbla
# 动态面板模型GMM估计的Python 在经济学和统计学中,动态面板模型是一种有效的数据分析工具,可以捕捉时间序列和跨个体的变化。动态面板模型通常用于分析那些既受到时间效果又受到个体特征影响的数据。在这篇文章中,我们将介绍如何使用GMM(广义矩估计法)来估计动态面板模型,并提供一个Python代码示例。 ## 什么是动态面板模型? 动态面板模型是一种扩展的面板数据模型,其中包含滞后因变量。
原创 9月前
780阅读
在该博客中,我们提到了贾佳亚老师团队利用GMM实现颜色迁移的一个工作[1]。后来我详细的学习了该工作,发现还是有很多细节是值得深入研究的。因此,我在学习该工作的基础上,决定撰写这篇博客,分享一些学习心得,以帮助那些希望学习GMM模型的同学深入理解其算法机制。1. 简介我们在之前的博客中已经介绍过了一些主流的图像颜色迁移方法。这些方法一般通过计算全局颜色分布对应或者语义分析对应,来构建颜色迁移策略。
文章目录GM(1,1)模型1 GM(1,1)模型概述2 GM(1,1)数据处理方法3 GM(1,1)模型方法的可行性检验4 GM(1,1)预测模型的构建5 GM(1,1) 模型的检验6 GM(1,1) 模型的适用范围7 GM(1,1) 残差模型R语言实现python GM(1,1)模型1 GM(1,1)模型概述灰色预测经常用来解决数据量较少且不能直接发现规律的数据。对于包含不确定信息的序列,灰色
转载 2023-07-21 18:26:03
534阅读
目标检测 PAA - 高斯混合模型(GMM)和期望最大化算法(EM algorithm)flyfish论文 Probabilistic Anchor Assignment with IoU Prediction for Object Detection关键字: 期望最大化算法(EM算法) expectation maximization algorithm 高斯混合模型( GMM) Gaussia
(最近接触了米筐、同花顺 MindGo 等量化投资平台,打算学习一下 python 相关的知识,MindGo 量化平台上也正在产出一些 python 教材,个人觉得还不错,给大家分享一下,有兴趣的同学可以学习一波~)1.字符串(str)字符串是 Python 中最常用的数据类型,使用引号来创建字符串,注:单引号或者双引号都行![示例] 创建字符串first='hello world !' #简单的
导读:针对异步电机单矢量模型预测转矩控制(MPTC)存在的转矩脉动较大和开关频率在整个速度域范围内不固定的问题,本期文章主要介绍一种基于广义双矢量的异步电机MPTC控制策略。如果需要文中的仿真模型,可以关注微信公众号:浅谈电机控制,获取。控制策略将基本电压矢量组合扩展到广义双矢量,将基本电压矢量组合选取与作用时间计算分两次模型预测转矩控制处理,在每个控制周期先选择两个基本电压矢量,再计算其作用时间
转载 2024-01-03 14:55:29
99阅读
摘要   本文通过opencv来实现一种前景检测算法——GMM,算法采用的思想来自论文[1][2][4]。在进行前景检测前,先对背景进行训练,对图像中每个背景采用一个混合高斯模型进行模拟,每个背景的混合高斯的个数可以自适应。然后在测试阶段,对新来的像素进行GMM匹配,如果该像素值能够匹配其中一个高斯,则认为是背景,否则认为是前景。由于整个过程GMM模型在不断更新学习中,所以对动态背景有一
em算法和gmm算法 GMM is a really popular clustering method you should know as a data scientist. K-means clustering is also a part of GMM. GMM can overcome the limitation of k-means clustering. In this post
一些问题:1. 什么时候我的问题可以用GLM,什么时候我的问题不能用GLM?2. GLM到底能给我们带来什么好处?3. 如何评价GLM模型的好坏?  广义线性回归啊,虐了我快几个月了,还是没有彻底搞懂,看paper看代码的时候总是一脸懵逼。大部分分布都能看作是指数族分布,广义差不多是这个意思,我们常见的线性回归和logistic回归都是广义线性回归的特例,可以由它推到出来。对着
  • 1
  • 2
  • 3
  • 4
  • 5