GMM估计是用于解决内生性问题的一种方法,除此之外还有TSLS两阶段最小二乘回归。如果存在异方差GMM的效率会优于TSLS,但通常情况下二者结论表现一致,很多时候研究者会认为数据或多或少存在异方差问题,因而可直接使用GMM估计。内生变量是指与误差项相关的解释变量。对应还有一个术语叫‘外生变量’,其指与误差项不相关的解释变量。产生内生性的原因通常在三类,分别说明如下:内生性问题的判断上,通常是使用D
转载
2024-08-13 13:52:35
220阅读
21、请简要说说EM算法。@tornadomeet,本题解析来源:有时候因为样本的产生和隐含变量有关(隐含变量是不能观察的),而求模型的参数时一般采用最大似然估计,由于含有了隐含变量,所以对似然函数参数求导是求不出来的,这时可以采用EM算法来求模型的参数的(对应模型参数个数可能有多个),EM算法一般分为2步: E步:选取一组参数,求出在该参数下隐含变量的条件概率值; M步:结合E步求出的隐含变
1.矩估计 矩估计是什么呢?简单的说,就是用样本矩代替总体矩进行统计推断的方法。 一个最基础的例子是正态总体的参数估计问题。如果,如何估计和呢? 统计学一般会介绍两种估计方法:极大似然估计和矩估计。总体矩条件: 样本矩条件: = Op(1) ;1.1 OLS估计OLS估计是矩估计的一个特例。OLS估计的公式为:由于和无关,则其中是总体矩条件,对应的样本矩条件为:,得到: 另一种推导方法:1.
转载
2023-12-14 09:39:31
353阅读
EM最大期望算法(Expectation-maximization algorithm,又译为期望最大化算法),是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐性变量。最大期望算法经过两个步骤交替进行计算:第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值。M步上找到的
# R语言中的GMM参数估计
在统计学和机器学习中,参数估计是一个重要的任务。特别是在处理复杂数据时,使用适当的估计方法可以显著提高模型的性能。广义方法矩(GMM)是一种强大的参数估计技术,它不仅具有较高的灵活性,而且适用于不同类型的模型。在本文中,我们将探讨如何在R语言中实施GMM参数估计,并通过具体代码示例来帮助您理解这一过程。
## GMM概述
GMM的基本思想是通过样本矩与理论矩之间
教程列表:4固定效应变截距面板数据模型Stata软件操作教程7Hausman固定效应随机效应检验-面板数据模型Stata软件操作教程3混合面板数据模型-Stata软件操作教程1数据输入-面板数据模型Stata软件操作教程8面板单位根LLC、IPS检验1-Stata软件操作教程8面板单位根检验2-Stata软件操作教程9变系数面板数据模型1-Stata软件操作教程9变系数面板数据模型2-Stata软
转载
2023-10-16 09:01:02
235阅读
用于函数估计的非参数方法主要有核密度估计、局部多项式回归估计等。非参的函数估计的优点在于稳健,对模型没有什么特定的假设,只是认为函数光滑,避免了模型选择带来的风险;但是,表达式复杂,难以解释,计算量大是非参的一个很大的毛病。所以说使用非参有风险,选择需谨慎。核密度估计(kernel density estimation)是在概率论中用来估计未知的密度函数,属于非参数检验方法之一,由Rosenbla
转载
2023-12-20 06:22:03
84阅读
# 动态面板模型GMM估计的Python
在经济学和统计学中,动态面板模型是一种有效的数据分析工具,可以捕捉时间序列和跨个体的变化。动态面板模型通常用于分析那些既受到时间效果又受到个体特征影响的数据。在这篇文章中,我们将介绍如何使用GMM(广义矩估计法)来估计动态面板模型,并提供一个Python代码示例。
## 什么是动态面板模型?
动态面板模型是一种扩展的面板数据模型,其中包含滞后因变量。
前言因为最近项目上的需要,才发现MATLAB的统计工具箱中的参数估计函数,觉得很简单很好用,现在把所有的参数估计函数整理一下,并在最后面附上调用示例。参与人员由于时间关系,这篇随笔是两个人一起整理的,下面是分工列表:文字整理:鹏老师 博客:代码整理:CL_Pan_DUT 博客:参数估计函数参数估计式统计推断问题,即当总体分布的数学形式已知,用有限
转载
2023-12-31 21:58:28
11阅读
文章目录GM(1,1)模型1 GM(1,1)模型概述2 GM(1,1)数据处理方法3 GM(1,1)模型方法的可行性检验4 GM(1,1)预测模型的构建5 GM(1,1) 模型的检验6 GM(1,1) 模型的适用范围7 GM(1,1) 残差模型R语言实现python GM(1,1)模型1 GM(1,1)模型概述灰色预测经常用来解决数据量较少且不能直接发现规律的数据。对于包含不确定信息的序列,灰色
转载
2023-07-21 18:26:03
534阅读
导读:针对异步电机单矢量模型预测转矩控制(MPTC)存在的转矩脉动较大和开关频率在整个速度域范围内不固定的问题,本期文章主要介绍一种基于广义双矢量的异步电机MPTC控制策略。如果需要文中的仿真模型,可以关注微信公众号:浅谈电机控制,获取。控制策略将基本电压矢量组合扩展到广义双矢量,将基本电压矢量组合选取与作用时间计算分两次模型预测转矩控制处理,在每个控制周期先选择两个基本电压矢量,再计算其作用时间
转载
2024-01-03 14:55:29
99阅读
单高斯分布模型SGM高斯密度函数估计是一种参数化模型。有单高斯模型(Single Gaussian Model, SGM)和高斯混合模型(Gaussian mixture model,GMM)两类。类似于聚类,根据高斯概率密度函数(PDF,见公式1)参数的不同,每一个高斯模型可以看作一种类别,输入一个样本x,即可通过PDF计算其值,然后通过一个阈值来判断该样本是否属于高斯模型。很明显,SGM适合于
转载
2024-04-24 19:13:37
82阅读
1.算法仿真效果
matlab2022a仿真结果如下:
2.算法涉及理论知识概要
GMM,高斯混合模型,也可以简写为MOG。高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。GMMs已经在数值逼近、语音识别、图像分类、图像去噪、图像重构、故障诊断、视频分析、邮件过滤、密度估计、目标识别与跟踪等领域取得了良好的效果
原创
精选
2023-05-15 23:08:39
316阅读
GMM算法
第一章引子假设放在你面前有5篮子鸡蛋,每个篮子有且仅有一种蛋,这些蛋表面上一模一样,就是每一种蛋涵盖有且只有一种维生素,分别是A、B、C、D、E。这个时候,你需要估计这五个篮子的鸡蛋的平均重量μ。 首先有个总的假设: 假设每一种维生素的鸡蛋的重量都服从高斯分布。 这个时候,因为每个篮子的鸡蛋包含有且只有一种,并且彼此之间相同的维生素,即每个篮子的鸡蛋都服从相同的分布,这个时候
转载
2023-08-31 10:07:46
249阅读
看了很多博文,包括《统计学习知识》和西瓜书上对GMM算法的推导,总有些重要的步骤被略去(比如从公式一推到公式二,书上直接给出结果,却没有具体步骤),导致理解整个算法非常困难。后来幸运地发现一篇博文,使用了对我而言易于理解的语言,重要把整个推导过程疏通成功,最后在纸上手推了一遍,真是酣畅淋漓!算法实现很简单,结构跟K-均值形似,参数的推导过程不用体现在代码上,直接根据推导出来的公式计算就
转载
2023-11-18 10:11:51
138阅读
GMP模型GMP模型的演进过程1)GM模型在Go1.0版本是Go的调度方式为GM模式,但是其有几个严重不足:限制了Go并发编程的的伸缩性 单一全局互斥锁和集中状态存储的存在导致所有goroutine相关操作都要上锁 goroutine的传递问题:经常在M之间传递“可运行”的goroutine回导致调度延迟增大,带来额外的性能损耗 每个M都做内存缓存,导致内存占用过高,数据局部性较差。 因系统调用而
1.往往假设特征之间独立同分布,那么似然函数往往是连城形式,直接求骗到不好搞,根据log可以把连乘变为连加。 2.另外概率值是小数,多个小数相乘容易赵成浮点数下溢,去log变为连加可以避免这个问题。 若果原始似然函数中没有连加和,那么去对术后没有log(a+b)的形式,此时可以用GD,否则用EM,村
转载
2016-06-20 11:27:00
102阅读
2评论
# 实现 GMM 模型的 Java 实现教程
## 1. 概述
在本教程中,我将向你介绍如何使用 Java 实现 GMM(Gaussian Mixture Model)模型。GMM 是一种基于高斯分布的概率模型,常用于聚类和密度估计等任务。
## 2. 整体流程
下面是实现 GMM 模型的整体流程:
| 步骤 | 描述 |
| --- | --- |
| 步骤1 | 加载数据 |
| 步
原创
2023-08-05 12:32:05
63阅读
近期上了付费的语音识别相关课程,算是第一次系统学习语音识别相关知识,关于GMM-HMM模型还是没有理解得很透彻,写出来捋一捋思路。 一.单音素GMM-HMM模型 图一
一段2秒的音频信号,经过【分帧-预加重-加窗-fft-mel滤波器组-DCT】,得到Fbank/MFCC特征作为输入信号,此处若以帧长为25ms,帧移为25ms为例,可以得到80帧的输入信号,这80帧特征序列就
转载
2024-06-24 21:19:48
83阅读
GMM理解: 用高斯混合模型(GMM)的最大期望(EM)聚类 使用高斯混合模型(GMM)做聚类首先假设数据点是呈高斯分布的,相对应K-Means假设数据点是圆形的,高斯分布(椭圆形)给出了更多的可能性。我们有两个参数来描述簇的形状:均值和标准差。所以这些簇可以采取任何形状的椭圆形,因为在x,y方向上都有标准差。因此,每个高斯分布被分配给单个簇。 所以要做聚类首先应该找到数据集的均值和标准差,我们将
转载
2024-08-24 20:54:32
47阅读