em算法和gmm算法 GMM is a really popular clustering method you should know as a data scientist. K-means clustering is also a part of GMM. GMM can overcome the limitation of k-means clustering. In this post
转载
2024-07-27 16:31:01
344阅读
1. 概要1)动态面板模型:在面板数据中考虑被解释变量的动态特征;2)由于被解释变量的滞后项也进入回归方程,「1」个体固定效应会导致普通的OLS回归产生偏误和不一致性——这也是回归内生性问题的一种形式;3)为了克服OLS估计的问题,需要引入「2」人工变量:在动态面板模型中,最常用的工具变量是被解释变量和解释变量的滞后及差分滞后项;4)引入这类工具变量后,可利用GMM的一般框架进行估计,因此这类方法
转载
2023-12-27 13:03:38
624阅读
教程列表:4固定效应变截距面板数据模型Stata软件操作教程7Hausman固定效应随机效应检验-面板数据模型Stata软件操作教程3混合面板数据模型-Stata软件操作教程1数据输入-面板数据模型Stata软件操作教程8面板单位根LLC、IPS检验1-Stata软件操作教程8面板单位根检验2-Stata软件操作教程9变系数面板数据模型1-Stata软件操作教程9变系数面板数据模型2-Stata软
转载
2023-10-16 09:01:02
233阅读
用于经济预测的计量经济学结构模型一般可以分为两类:静态模型(即截面模型)、动态模型(即时间序列模型)1. 静态模型与动态模型的异同点 1)共同点: &n
转载
2024-01-05 19:41:13
177阅读
# 动态面板模型GMM估计的Python
在经济学和统计学中,动态面板模型是一种有效的数据分析工具,可以捕捉时间序列和跨个体的变化。动态面板模型通常用于分析那些既受到时间效果又受到个体特征影响的数据。在这篇文章中,我们将介绍如何使用GMM(广义矩估计法)来估计动态面板模型,并提供一个Python代码示例。
## 什么是动态面板模型?
动态面板模型是一种扩展的面板数据模型,其中包含滞后因变量。
1. 引言下载数据的时候,通常获得的数据是以面板形式排列的,如图1所示,但也会遇到某些以时序形式排列的数据,如图2所示。显然面板形式的数据更便于使用,但有时会出现所需数据只有时序形式的情况,如使用wind数据库的证券分析工具时,就只能下载时序形式的数据。因此,本文提供了一种(不太聪明的)将时序形式转化为面板形式数据的思路。欢迎大家一起讨论优化本代码。图1 面板形式的数据图2 时序形式的数据2. 这
摘要 本文通过opencv来实现一种前景检测算法——GMM,算法采用的思想来自论文[1][2][4]。在进行前景检测前,先对背景进行训练,对图像中每个背景采用一个混合高斯模型进行模拟,每个背景的混合高斯的个数可以自适应。然后在测试阶段,对新来的像素进行GMM匹配,如果该像素值能够匹配其中一个高斯,则认为是背景,否则认为是前景。由于整个过程GMM模型在不断更新学习中,所以对动态背景有一
转载
2024-04-16 21:57:56
119阅读
近期上了付费的语音识别相关课程,算是第一次系统学习语音识别相关知识,关于GMM-HMM模型还是没有理解得很透彻,写出来捋一捋思路。 一.单音素GMM-HMM模型 图一
一段2秒的音频信号,经过【分帧-预加重-加窗-fft-mel滤波器组-DCT】,得到Fbank/MFCC特征作为输入信号,此处若以帧长为25ms,帧移为25ms为例,可以得到80帧的输入信号,这80帧特征序列就
转载
2024-06-24 21:19:48
83阅读
国际顶级期刊的编辑非常重视内生性问题,一定要处理好内生性问题,03讲了工具变量,本讲中通过动态面板数据能够较好处理内生性问题。动态面板数据动态面板数据(Dynamic Panel Data,DPD):是指在面板模型中,解释变量包含了被假释变量的滞后值。在动态面板数据类型中被解释变量和上一期变量之间存在关系。即,与之间是有关系的,上一期的值决定着下一期的值。动态面板数据模型的设定是在原有的静态面板数
转载
2024-01-06 20:05:34
403阅读
注:本文主要参考Andrew Ng的Lecture notes 8,并结合自己的理解和扩展完成。
GMM简介
GMM(Gaussian mixture model) 混合高斯模型在机器学习、计算机视觉等领域有着广泛的应用。其典型的应用有概率密度估计、背景建模、聚类等。
图1 GMM用于聚类 图2 GMM用于概率密度
# Python 动态面板模型实现教程
## 一、整体流程
```mermaid
journey
title Python 动态面板模型实现流程
section 基本步骤
开始 --> 下载相关库 --> 数据准备 --> 模型构建 --> 结果展示 --> 结束
```
## 二、具体步骤
### 1. 下载相关库
首先,我们需要下载并安装需要的库,其中
原创
2024-05-30 06:28:57
244阅读
算法逻辑在这里: 贴之前先说下,本来呢是打算自己写一个的,在matlab 上,不过,实在是写不出来那么高效和健壮的,网上有很多实现的代码,例如上面参考里面的,那个代码明显有问题阿,然后因为那里面的代码与逻辑分析是一致的,那在其基础上修改看看,结果发现代码健壮性实在太差了,我的数据集是 70-by-2000 的矩阵,70个样本2000维,结果协方差的逆根本算不出来,全部是i
看了很多博文,包括《统计学习知识》和西瓜书上对GMM算法的推导,总有些重要的步骤被略去(比如从公式一推到公式二,书上直接给出结果,却没有具体步骤),导致理解整个算法非常困难。后来幸运地发现一篇博文,使用了对我而言易于理解的语言,重要把整个推导过程疏通成功,最后在纸上手推了一遍,真是酣畅淋漓!算法实现很简单,结构跟K-均值形似,参数的推导过程不用体现在代码上,直接根据推导出来的公式计算就
转载
2023-11-18 10:11:51
138阅读
本文所涉及的内容的先修知识:1、概率统计相关知识,统计机器学习;KL散度;信息熵;2、拉格朗日乘子法;3、KMeans聚类算法、混合高斯分布模型(GMM)和隐马尔可夫(HMM)模型。首先,EM算法的E是,Expectation,指的是期望;M代表的是Max。就如这个算法的名字本身所表现的那样,EM算法分两步走,E步骤和M步骤。在正式讲EM算法之前,我们先来考虑一个GMM的例子。现在我们有一堆数据样
转载
2023-12-05 04:07:45
90阅读
Note sth about GMM(Gaussian Mixtrue Model)高斯混合模型的终极理解高斯混合模型(GMM)及其EM算法的理解
这两篇博客讲得挺好,同时讲解了如何解决GMM参数问题的EM算法,其实GMM式子没有什么高深的地方,都是概率论的东西,主要是构思比较巧妙。动机:
GMM是用来拟合某种分布的。哪种?任意一种!当然,前提是参数足够多的情况下,所以实作其实并非拟合任意模型。
文章目录1. R中的动态回归模型(Dynamic Regression Models)2. 动态谐波回归(Dynamic Harmonic Regression)3. 软件实现3.1 动态回归3.2 动态谐波回归4.为啥叫“谐波”?5.参考资料 ——整理的动态谐波回归的一些资料,可能有片面的,仅供参考1. R中的动态回归模型(Dynamic Regression Models)对一个时间序列{y
转载
2024-08-11 10:45:29
156阅读
一、R语言简介这节课我们会初步学习R的功能和使用。 我们会学习怎样在不同的操作系统安装R。 我们会在开始控制台内使用R,并且分别用交互式和批处理的方式使用R。 最后,在这节课,我们会讨论怎样用包来扩展R。1、R的功能和使用。R是一个优秀的数据分析和制图的软件环境。 它最初由Ross Ihaka和Robert Gentleman1993年在新西兰,奥克兰大学创建。 它们将R创建为一种帮助教学生统计初
转载
2023-07-27 23:42:56
371阅读
# 实现面板模型的Python代码
在这篇文章中,我们将一起学习如何用Python实现面板模型。面板数据是一种包含多个个体(如公司、国家等)、在多个时间点上观测的数据类型。其在统计学和经济学中有广泛的应用。下面,我们会通过几个步骤来实现一个简单的面板模型,最终展示我们的结果。
## 内容流程
在开始之前,首先看一下我们要实现的步骤:
| 步骤 | 描述 |
| ---- | ---- |
原创
2024-10-16 07:04:06
171阅读
# Python的GMM模型:高效的数据聚类方法
高斯混合模型(GMM,Gaussian Mixture Model)是一种基于概率的方法,用于表示具有多个高斯分布的复杂数据集。这种模型能够很好地处理聚类问题,是数据分析和机器学习中不可或缺的工具之一。本文将介绍GMM的基本概念,使用Python进行实现,并通过代码示例展示其应用。
## GMM的基本概念
GMM假设数据点是由多个高斯分布生成
EM算法与高斯混合模型前言EM算法是一种用于含有隐变量的概率模型参数的极大似然估计的迭代算法。如果给定的概率模型的变量都是可观测变量,那么给定观测数据后,就可以根据极大似然估计来求出模型的参数,比如我们假设抛硬币的正面朝上的概率为p(相当于我们假设了概率模型),然后根据n次抛硬币的结果就可以估计出p的值,这种概率模型没有隐变量,而书中的三个硬币的问题(先抛A然后根据A的结果决定继续抛B还是C),这