傅里叶变换求解 信号与系统 2023(春季) 作业要求 - 第六次作业信号与系统 2023(春季) 作业参考答案 - 第六次作业  01 第六次作业一、习题简介  傅里叶变换公式把信号时域信号和对应的频谱信号联系起来。 求取简单信号频谱是分析的基础,  这里给出了常用的傅里叶变换方法, 使用公式求取信号频谱是最基本的方法。 第六次作业中留有几道习题用于练习信号的频谱计算。
1,卷积:卷积的时域解释可类比为摔跤后疼痛感的持续,不同时刻的输入x(m)都对输出有影响,影响的大小取决于m时刻后的影响因子h(n-m),则此时(n时刻)的输出受m时刻的影响为x(m)*h(n-m),再考虑其他时刻的影响,则卷积公式得出。从频域理解的话就是系统输出的傅里叶变换=输入的傅里叶变换*频率响应因子。2,傅里叶变换:个人理解所谓的傅里叶变换就是通过数学上的累加将时间因子消去只留下频率因子的
  傅里叶变换主要分为连续和离散两大块。对连续时间信号的分析,从周期信号级数(FS)展开到统一的傅里叶变换(FT),是一套完整地体系。离散时间信号分析和连续时间信号的分析非常像,但确实是不同,没法统一地表示,主要区别在“求和”和“积分”上。FS,FT,DFS,DTFT,DFT构成了整个分析的体系。   不管是哪种变换,都满足“周期-离散”,“非周期-连续”的对应关系。这个关系
1.理解二维傅里叶变换的定义 1.1二维傅里叶变换 1.2二维离散傅里叶变换 1.3用FFT计算二维离散傅里叶变换 1.3图像傅里叶变换的物理意义 2.二维傅里叶变换有哪些性质? 2.1二维离散傅里叶变换的性质 2.2二维离散傅里叶变换图像性质 3.任给一幅图像,对其进行二维傅里叶变换和逆变换 4.附录
  一、快速介绍傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的余弦(或正弦)波信号的无限叠加。FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。那其在实际应用中,有哪些用途呢?1.有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征(频率,幅值,初相位);2.FFT可以将一个信号的频谱提取出来,进行频谱分析,为后续滤波准备;3.
# Python傅里叶变换实现 ## 概述 在本文中,我将向你介绍如何使用Python实现傅里叶变换。傅里叶变换是一种将时域信号转换为频域信号的方法,通过它可以将信号分解为一系列正弦和余弦函数。傅里叶变换在信号处理、图像处理等领域具有重要的应用。 ## 傅里叶变换的流程 下面是实现傅里叶变换的步骤: | 步骤 | 描述 | | --- | --- | | 1 | 导入所需的库 | | 2 |
原创 2023-10-13 09:22:06
244阅读
目录 1 概念解释1.1 正弦波1.2 时域1.3 频域1.4 时域转频域2 级数(Fourier Series)2.1 频谱2.2 级数(Fourier Series)的相位谱3 傅里叶变换(Fourier Transformation)4 分析的四种形式5 系列公式推导5.1 级数的推导 (FS
# Python中的傅里叶变换与反变换 ## 1. 简介 傅里叶变换是一种信号处理技术,可以将一个信号从时域转换到频域,而反变换则可以将频域信号转换回时域信号。在Python中,我们可以使用`numpy`库来实现这两种变换。在本文中,我将教你如何在Python中实现傅里叶变换和反变换。 ## 2. 流程 首先,让我们看一下实现傅里叶变换和反变换的整个流程: ```me
原创 2024-06-29 06:37:48
78阅读
氏级数即级数。法国数学家发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称为级数(法语:série de Fourier,或译为级数)。级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用。中文名氏级数外文名série de Fourier全 
图像滤波分为空间域滤波和频域滤波,空间滤波的内容见本人的另一篇文章: 清逸:MATLAB中的图像变换之线性空间滤波zhuanlan.zhihu.com 本文主要讲述如何在MATLAB中实现频域滤波,那么,怎么实现呢,我们这里讲的所有的滤波都是通过傅里叶变换在频域中实现的,所有这部分和傅里叶变换渊源很深,至于傅里叶变换本身,我自己也不能解释的很清楚,我们只讲他如何在matlab
目录【实验目的】【实验设备】【实验内容】1.某系统的频响函数编辑,试画出其对数幅频特性与相频特性。编辑 2.试画出频响函数编辑 的对数幅频特性。3.已知信号为编辑,用MATLAB编程实现该信号经冲激脉冲,抽样得到的抽样信号fs(t)及其频谱。令参数E=5,τ=0.5,采用抽样间隔 4.对题3获得的抽样信号,采用截止频率为4pi的低通滤波器对其滤波后重建信号f(t),并
# Python傅里叶变换简介与代码示例 傅里叶变换是信号处理和分析中一种重要的数学工具,它能够将函数从时间域转换到频率域。这种变换在科学与工程中广泛应用,例如在图像处理、音频分析和数据压缩等领域。本文将介绍傅里叶变换的基本概念及其在Python中的应用,并提供相关的代码示例。 ## 傅里叶变换的基本概念 傅里叶变换的核心思想是任何一个周期性信号都可以表示为一组正弦波或者余弦波的叠加。通过
原创 2024-08-29 07:20:19
42阅读
       傅里叶变换是信号的一种描述方式,通过增加频域的视角,将时域复杂波形表示为简单的频率函数,获得时域不易发现的与信号有关的其他特征。       根据时间域信号x自变量的不同,可以将信号分为连续信号x(t)和离散序列x[n],根据信号周期性不同,又可以将信号分为周期性和非周期性的,所以待分析的信号类型有四种形
说明:本文适合信号处理方面有一定的基础的人阅读,能够理解什么时候级数和傅里叶变换,能够理解他们的核心思想以及基本原理,能够理解到底什么是“频率域”,能够从频率的角度分析信号。一、一些关键概念的引入1、离散傅里叶变换(DFT)离散傅里叶变换(discrete Fourier transform) 分析方法是信号分析的最基本方法,傅里叶变换是分析的核心,通过它把信号从时间域变换到频率
关键词:复数,欧拉公式,正弦波,复数正弦波概述傅里叶变换在科学计算、图像处理、信号等方面有着广泛的应用,也是作为一个进阶的程序员所必须要了解的。傅里叶变换听起来非常复杂,但实际上在计算机上实现和理解都非常简单。我整理出几篇笔记,以Python实现为主,不考虑太多数学公式,方便自己,也方便大家自学。注:早期的科学科学计算大多数都是MATLAB实现的,所以国内外很多课程代码都是MATLAB实现的。本着
# 教你如何在Python中改变信号相位并进行逆傅里叶变换 ## 介绍 作为一名经验丰富的开发者,我将教你如何在Python中实现改变信号相位并进行逆傅里叶变换的过程。这是一项比较复杂的任务,但是只要按照我的步骤操作,你一定能够成功实现。 ## 流程图 ```mermaid gantt title 信号相位改变与逆傅里叶变换流程图 section 流程步骤 创建信号
原创 2024-04-30 04:37:59
96阅读
# 级数合成方波信号信号处理中,级数是一种将周期信号分解为一系列简单正弦和余弦函数的方法。通过将这些简单的正弦和余弦函数相加,可以合成原始信号。方波信号是最简单的周期信号之一,因此本文将介绍如何使用Python编程语言来合成方波信号。 ## 方波信号 方波信号是一种以矩形波形进行周期性变化的信号。它在一个周期内有两个不同的幅度,一般为正和负。方波信号的周期记为T,占空比(即正
原创 2023-08-01 14:54:39
631阅读
老版本pytorch实现多维度(Fourier Transform)变换在新版本pytorch中可以轻易实现多维度的变换:x = torch.rand(10, 10, dtype=torch.complex64) fftn = torch.fft.fftn(x)老版本中没有torch.fft.fftn()函数,因此需要进行函数嵌套实现x = torch.rand(10, 10, dty
目标本文简述级数(Fourier Series),并使用Python实现简单的级数的展开。由于本人对数学不是很了解,纯粹从工科的角度出发,会用即可。有叙述不当之处请各位包涵与指正,非常感谢。意义傅里叶变换在各个领域都有很广泛的应用,一篇有趣的文章《统治世界的十大算法》中排第二名,李永乐老师的视频对傅里叶变换的评级其为掌握世界本质大门的钥匙,可见其应用的广泛程度与重要性。 如傅里叶变换在
只要用足够多的圆,就能绘制任意的封闭曲线。绘图之前首先要了解级数,何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称级数为一种特殊的三角级数,根据欧拉公式,三角函数又能化成指数形式,也称傅立叶级数为一种指数级数。(关于级数的更多内容可自行百度) 然后进入正题。整个绘制的原理大致是需要用AI绘图工具,将整
  • 1
  • 2
  • 3
  • 4
  • 5