说明:本文适合信号处理方面有一定的基础的人阅读,能够理解什么时候级数和傅里叶变换,能够理解他们的核心思想以及基本原理,能够理解到底什么是“频率域”,能够从频率的角度分析信号。一、一些关键概念的引入1、离散傅里叶变换(DFT)离散傅里叶变换(discrete Fourier transform) 分析方法是信号分析的最基本方法,傅里叶变换是分析的核心,通过它把信号从时间域变换到频率
在数字图像处理中,经常需要进行傅立叶变换,分析数字图像的频谱,用python简单方便,如下:import numpy as np import matplotlib.pyplot as plt import cv2 import sys img = cv2.imread('%s.png' % sys.argv[1],0) dft = cv2.dft(np.float32
matlab时频分析之短时傅里叶变换 spectrogram短时傅里叶变换常用于缓慢时变信号的频谱分析,可以观察沿时间变化的频谱信号。其优点如下图所示,弥补了频谱分析中不能观察时间的缺点,也弥补了时域分析不能获取频率的缺点。1 STFT的基本原理基本原理可以理解为对一段长信号,截取每一段时间的短信号做fft,将得到的频谱图时间沿时间轴排列,及可得到时频的云图。2 matlab中实现这里采用最基础的
01 第六次作业一、习题简介  在第六次作业中, 包括有四个习题,要求对已知信号频谱进行反变换,求取信号的时域波形。 其中有三个频谱是给出了幅度谱和相位谱, 有一个习题则是给出了频谱的表达式。 在求解的过程中可以直接通过傅里叶变换变公式进行求解, 也可以通过傅里叶变换的性质完成求解。二、习题求解1、第一题  第一小题的频谱是通过幅度谱和相位谱给定的。 直接应用变换公式,  求解信
最近,应研究室需要,在导师慈善的注视下,作为新生的我勤勤恳恳地开始啃傅里叶变换相关知识,又是看书又是找各种博客,昨日刚完成了导师的一个小任务,着实觉得学习历程之辛苦,最主要还是知识点的散乱和驳杂,因此在此做一个小总结,希望能对后来者有点帮助。如果能得到各位老爷们的赞,实属荣幸。傅里叶变换,尤其是离散傅里叶变换以及其简化运算的快速傅里叶变换应用广泛,本文将详细地从连续级数开始,推导离散
# 深度学习中的频谱与Loss函数 在深度学习的研究领域,损失函数(Loss function)是衡量模型预测与实际值之间差异的标准。而频谱则是信号处理中的重要工具,能够帮助我们分析信号的频率成分。近年来,将傅里叶变换与深度学习结合的研究逐渐增多,显示出其在图像处理、语音识别等领域的潜力。 ## 什么是傅里叶变换? 傅里叶变换是一种数学变换,它将时间域的信号转换为频率域的信号。在
```markdown 在进行声音信号处理或者图像处理时,快速变化(FFT)是一个非常重要的工具。而在Java语言中实现FFT并生成单边频谱则是需要掌握的一项技能。本文将详细记录如何在Java环境下进行快速变化,并生成单边频谱的过程。 ## 环境准备 首先,我们需要确保我们的开发环境能够支持所需的技术栈。Java语言本身是主要的工具,配合一些数学可以大大简化FFT的实现过程。
原创 6月前
53阅读
# 使用Python实现频谱离散反变换 在信号处理和分析中,频谱离散反变换(IDFT)是一项重要工具,用于将频域信号转换回时域信号。对于刚入行的小白来说,理解和实现这一过程可能会有些困难,因此本文将分步骤教会你如何使用Python实现IDFT。 ## 一、整体流程 为了帮助你更好地理解整个过程,下面的表格展示了实现频谱离散反变换的主要步骤。 | 步骤
原创 2024-07-31 08:20:22
171阅读
目录 1 概念解释1.1 正弦波1.2 时域1.3 频域1.4 时域转频域2 级数(Fourier Series)2.1 频谱2.2 级数(Fourier Series)的相位谱3 傅里叶变换(Fourier Transformation)4 分析的四种形式5 系列公式推导5.1 级数的推导 (FS
       傅里叶变换是信号的一种描述方式,通过增加频域的视角,将时域复杂波形表示为简单的频率函数,获得时域不易发现的与信号有关的其他特征。       根据时间域信号x自变量的不同,可以将信号分为连续信号x(t)和离散序列x[n],根据信号周期性不同,又可以将信号分为周期性和非周期性的,所以待分析的信号类型有四种形
在这一章我终于知道了信号的概念——一个关于时间的函数。这个真的很重要,我一直以为信号指的就是一段波,不管在时域还是频域,亦或者是物理上的波,都可以叫信号,可能那也是一个广义的定义吧,大家都这么叫,没有问题。 当然,在得出这个结论时,并没有严格地设定好这个结论成立的条件,狄利克雷补充了这些条件,即展开需满足以下条件: 而绝大部分工程问题遇到的都是有限的问题,因此大部分
转载 2024-02-03 22:14:41
134阅读
目录一、级数(Fourier Series、FS)的实数域表示二、级数(Fourier Series、FS)的复数域表示三、傅里叶变换(FT)的引出四、DTFT、DFT、FFT的引出第一次认识(Fourier)是在大二那年的《信号与系统》课上,当时学这门课也不知道有啥用,听的也是一愣一愣的。。最后也仅仅是达到了期末前三天记了点公式,能考个试的水平,当初想着以后怎么也不会再接触通信
1.理解二维傅里叶变换的定义 1.1二维傅里叶变换 1.2二维离散傅里叶变换 1.3用FFT计算二维离散傅里叶变换 1.3图像傅里叶变换的物理意义 2.二维傅里叶变换有哪些性质? 2.1二维离散傅里叶变换的性质 2.2二维离散傅里叶变换图像性质 3.任给一幅图像,对其进行二维傅里叶变换和逆变换 4.附录
  傅里叶变换主要分为连续和离散两大块。对连续时间信号的分析,从周期信号的级数(FS)展开到统一的傅里叶变换(FT),是一套完整地体系。离散时间信号的分析和连续时间信号的分析非常像,但确实是不同,没法统一地表示,主要区别在“求和”和“积分”上。FS,FT,DFS,DTFT,DFT构成了整个分析的体系。   不管是哪种变换,都满足“周期-离散”,“非周期-连续”的对应关系。这个关系
 前面写过关于算法的应用例子。《基于傅里叶变换的音频重采样算法 (附完整c代码)》当然也就是举个例子,主要是学习傅里叶变换。这个重采样思路还有点瑕疵,稍微改一下,就可以支持多通道,以及提升性能。当然思路很简单,就是切分,合并。留个作业哈。本文不讲过多的算法思路,傅里叶变换的各种变种,绝大多数是为提升性能,支持任意长度而作。当然各有所长,当时提到参阅整理的算法:https://git
转载 2023-12-05 21:05:30
64阅读
一、用途:“任意”的函数经过一定的分解,都能够表示为正弦函数的线性组合形式。比如想要过滤一首音乐中的噪音,我们可以使用傅里叶变换将叠加后的图像分离为一个个纯声的正弦图像,去掉特定频率的噪声就能实现噪声的过滤。当然公式的应用场景很多,下面我们来通过一段图文分析公式的含义。 二、缠绕图像我们可以将叠加后的波形图绘制到缠绕图像上去,缠绕频率指“每秒几圈”,频率越低则图像越复杂,当频
[导读] 今天来聊聊如何实现快速傅立叶变换FFT及其应用,希望大家喜欢。直接谈FFT,可能没这方面基础的同学,不太能明白,先看看它的相近较容易理解的几个概念吧。啥是傅立叶级数?在数学中,级数(Fourier series)是把类似波的函数表示成简单正弦波的方式。更正式地说法是,它能将任何周期性函数或周期信号分解成一个(可能由无穷个元素组成的)简单振荡函数的集合,即正弦函数和余弦函数(或者,等
图像滤波分为空间域滤波和频域滤波,空间滤波的内容见本人的另一篇文章: 清逸:MATLAB中的图像变换之线性空间滤波zhuanlan.zhihu.com 本文主要讲述如何在MATLAB中实现频域滤波,那么,怎么实现呢,我们这里讲的所有的滤波都是通过傅里叶变换在频域中实现的,所有这部分和傅里叶变换渊源很深,至于傅里叶变换本身,我自己也不能解释的很清楚,我们只讲他如何在matlab
氏级数即级数。法国数学家发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称为级数(法语:série de Fourier,或译为级数)。级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用。中文名氏级数外文名série de Fourier全 
目录【实验目的】【实验设备】【实验内容】1.某系统的频响函数编辑,试画出其对数幅频特性与相频特性。编辑 2.试画出频响函数编辑 的对数幅频特性。3.已知信号为编辑,用MATLAB编程实现该信号经冲激脉冲,抽样得到的抽样信号fs(t)及其频谱。令参数E=5,τ=0.5,采用抽样间隔 4.对题3获得的抽样信号,采用截止频率为4pi的低通滤波器对其滤波后重建信号f(t),并
  • 1
  • 2
  • 3
  • 4
  • 5