sparse函数和full函数稀疏矩阵与非稀疏矩阵的转换矩阵中非零元素的个数远远小于矩阵元素的总数),并且非零元素的分布没有规律,则称该矩阵为稀疏矩阵(sparse matrix)。二维数组Amn中有N个非零元素,若N<<m*n(N/m*n<=0.2),则称A为稀疏矩阵。 函数功能:生成稀疏矩阵 使用方法 : S = sparse(A) 一般意义上的稀疏矩阵,就是看起
转载
2023-07-29 11:22:02
236阅读
文章目录思路1.生成一个随机稀疏单位正交阵1.1生成稀疏矩阵1.2 生成稀疏对称矩阵1.3 生成正交阵1.3 正交阵单位化2. 生成对角线元素大于0的矩阵3. 生成稀疏对称正定矩阵python生成稀疏对称正定矩阵 思路如何生成随机对称正定矩阵?随机生成一个单位正交阵A随机生成一个对角元素均大于0的对角矩阵B(这个更容易了,就是生成几个随机正数而已)即为一个正定矩阵,同时也是一个对称矩阵。1.生成
转载
2024-01-27 11:09:20
79阅读
一、sparse模块:python中scipy模块中,有一个模块叫sparse模块,就是专门为了解决稀疏矩阵而生。本文的大部分内容,其实就是基于sparse模块而来的导入模块:from scipy import sparse二、七种矩阵类型 coo_matrixdok_matrixlil_matrixdia_matrixcsr_matrixcsc_matrixbsr_matrix三、coo_ma
转载
2023-08-26 22:46:33
75阅读
本文要点: 1、几个稀疏矩阵的应用场景 2、scipy得到稀疏格式矩阵后专用的方程组求解器 3、用稀疏格式求解方程组的速度对比 4、稀疏矩阵与原矩阵内存大小对比 5、python稀疏格式与array格式的互换在矩阵中有大量零元素的矩阵叫做稀疏矩阵(Sparse Matrix),相反那些非零数值占大多数元素的矩阵即是稠密矩阵(Dense Matrix)。矩阵中零元素如果特别多的话,不但占用了本没必
转载
2024-03-11 16:55:13
186阅读
对于那些零元素数目远远多于非零元素的数目,并且非零元素的分布没有规律的矩阵,称为稀疏矩阵。 由于稀疏矩阵中非零元素较少,零元素较多,因此可以采用只存储非零元素的方法进行压缩存储。 对于一个用二维数组存储的稀疏矩阵Amn,如果假设存储每个数组元素需要L个字节,那么存储整个矩阵需要m*n*L个字节。但是,这些存储空间的大部分存放的是0元素,从而造成大量的空间浪费。为了节省存储空间,可以只存储其中的非0
对于一个矩阵而言,若数值为零的元素远远多于非零元素的个数,且非零元素分布没有规律时,这样的矩阵被称作稀疏矩阵;与之相反,若非零元素数目占据绝大多数时,这样的矩阵被称作稠密矩阵。稀疏矩阵在工程应用中经常被使用,尤其是在通信编码和机器学习中。若编码矩阵或特征表达矩阵是稀疏矩阵时,其计算速度会大大提升。对于机器学习而言,稀疏矩阵应用非常广,比如在数据特征表示、自然语言处理等领域。用稀疏表示和工作在计算上
转载
2023-09-06 10:10:18
166阅读
在这篇博文中,我将向大家展示如何使用Python将邻接矩阵转换为稀疏矩阵。在图论和数据结构处理中,稀疏矩阵是一种广泛应用的数据结构,尤其在图的表示中。我们的目标是利用邻接矩阵更高效地存储和计算图的数据。
## 环境准备
在开始之前,我们需要确保安装了必要的依赖包。我们将使用`scipy`库来处理稀疏矩阵。以下是安装指南。
| 平台 | 安装命令
1. coo存储方式采用三元组(row, col, data)(或称为ijv format)的形式来存储矩阵中非零元素的信息。 coo_matrix的优点:有利于稀疏格式之间的快速转换(tobsr()、tocsr()、to_csc()、to_dia()、to_dok()、to_lil();允许重复项(格式转换的时候自动相加);能与CSR / CSC格式的快速转换 coo_matrix的缺点:不能直
转载
2024-02-04 21:41:53
132阅读
分布式算法设计1).MapReduce 在Map和Reduce两个基本算子抽象下,所谓Hadoop和Spark分布式计算框架并没有本质上的区别,仅仅是实现上的差异。阅读了不少分布式算法的实现(仅仅是实现,不涉及原理推导),大部分思路比较直观,大不了几个阶段的MapReduce就可以实现。这里主要介绍一个曾经困扰我好久且终于柳暗花明的问题,即“大规模稀疏矩阵乘法”。
转载
2023-11-11 16:31:34
179阅读
在处理稀疏矩阵乘以稀疏矩阵的问题时,尤其在 Python 环境中,我们需要利用高效的存储和计算方式,以避免不必要的资源浪费。本文将详细记录解决“Python 稀疏矩阵乘稀疏矩阵”问题的过程,包括环境准备、集成步骤、配置详解、实战应用、性能优化和生态扩展。
### 环境准备
确保您有合适的环境来运行 Python 代码。推荐使用 Python 3.6 及以上版本,并安装 `scipy` 和 `n
Python稀疏矩阵1. 导入模块2. SciPy中的稀疏矩阵2.1 坐标列表格式 COO2.2 格式转换2.3 压缩列格式和压缩行格式 CSR/CSC3. 创建稀疏矩阵3.1 稀疏矩阵的可视化3.2 稀疏矩阵线性代数3.3 线性方程组3.4 LU分解3.5 特征值问题 数组和矩阵是数值计算的基础元素。目前为止,我们都是使用NumPy的ndarray数据结构来表示数组,这是一种同构的容器,用于存
转载
2023-08-25 22:48:50
401阅读
直接上代码:#!/usr/bin/env python
# -*- coding:utf-8 -*-
# 序列转为稀疏矩阵
# 输入:序列
# 输出:indices非零坐标点,values数据值,shape稀疏矩阵大小
import numpy as np
def sparse_tuple_from(sequences, dtype=np.int32):
indices = []
转载
2023-06-02 23:19:25
276阅读
title: 稀疏矩阵乘法 date: 2020-11-09 19:31:44 tags: 稀疏矩阵运算 categories: 数据结构 在本算法中,两个稀疏矩阵的特性都有用到
规定规定以下变量名称,本文讲述 矩阵A × 矩阵B = 矩阵C 的运算过程需要用到的存储结构有:矩阵A,矩阵 B 的原始二维数组(2个)矩阵A,矩阵B 的三元组数组(2个)存储 矩阵A,矩阵B 每行有多少个非零
转载
2024-04-09 16:43:11
105阅读
以下是使用NumPy / SciPy进行密集和稀疏M矩阵的方法:import numpy as np
import scipy.sparse as sp
# Coordinates where S is True
S = np.array([[0, 1],
[3, 6],
[3, 4],
[9, 1],
[4, 7]])
# Dense M matrix
# Random big matrix
M
转载
2023-06-03 19:37:06
150阅读
默认使用csr格式的稀疏矩阵1、如果要统计稀疏矩阵全部元素的和,不要用sum(a),用np.sum(a)或则a.sum()就好。对于shape=10000*10000的矩阵而言,全部求和采用np.sum比sum高效得多:number = np.sum(sum(xtest_mask),axis=1)[0,0] 2.2秒number = np.sum(xtest_mask) &
转载
2023-08-11 14:09:04
346阅读
【scipy.sparse包】Python稀疏矩阵 文章目录【scipy.sparse包】Python稀疏矩阵1. 前言2. 导入包3. 稀疏矩阵总览4. 稀疏矩阵详细介绍4.1 coo_matrix4.2 dok_matrix4.3 lil_matrix4.4 dia_matrix4.5 csc_matrix & csr_matrix4.6 bsr_matrix5. 稀疏矩阵的存取5.1
转载
2023-09-19 00:47:23
270阅读
代码:#include<stdio.h>
#include<stdlib.h>
#define MAXSIZE 1000
typedef struct{
int row;//第几行
int col;//第几列
int e;//存储的值
}Triple;
typedef struct
{
Triple data[MAXSIZE];
int m,n,len;
转载
2024-06-22 06:53:11
60阅读
简单来说,矩阵是充满数字的表格。 A和B是两个典型的矩阵,A有2行2列,是2×2矩阵;B有2行3列,是2×3矩阵;A中的元素可用小写字母加行列下标表示,如 矩阵加减法 两个矩阵相加或相减,需要满足两个矩阵的列数和行数一致。 加法交换律:A + B = B + A 矩阵乘法A和B相乘,需要满足A的列数等于B的行数。 矩阵乘法很容易出错,尤其是两
转载
2023-09-01 18:40:57
260阅读
上周五汇报一篇导师的论文,其中提及了使用四叉树来存储稀疏矩阵。抽空用Python把它实现了一下,做个总结。首先看论文中提到的一个样例:可以看到通过通过四叉树将稀疏矩阵化成最后的结果。这里注意其中的圆分别为中间结点的混合域M、都为0的空域E与分解到最后可能有值或含零元的密集域D。上图就是我将一个长为n的矩阵,通过四叉树化解到最小边长为d的矩阵小块图。这里的d是我们自己定义的最后化解的最小矩阵块。代码
转载
2023-07-10 21:18:40
114阅读
一、scipy.sparse中七种稀疏矩阵类型1、bsr_matrix:分块压缩稀疏行格式
介绍 BSR矩阵中的inptr列表的第i个元素与i+1个元素是储存第i行的数据的列索引以及数据的区间索引,即indices[indptr[i]:indptr[i+1]]为第i行元素的列索引,data[indptr[i]: indptr[i+1]]为第i行元素的data。 在下面的例子中,对于第0行,in
转载
2024-02-10 12:20:44
94阅读