对于一个矩阵而言,若数值为零的元素远远多于非零元素的个数,且非零元素分布没有规律时,这样的矩阵被称作稀疏矩阵;与之相反,若非零元素数目占据绝大多数时,这样的矩阵被称作稠密矩阵。稀疏矩阵在工程应用中经常被使用,尤其是在通信编码和机器学习中。若编码矩阵或特征表达矩阵是稀疏矩阵时,其计算速度会大大提升。对于机器学习而言,稀疏矩阵应用非常广,比如在数据特征表示、自然语言处理等领域。用稀疏表示和工作在计算上
转载
2023-09-06 10:10:18
166阅读
python scipy中的sparse模块就是为存储和表示稀疏矩阵。 模块的导入以及查看模块的信息:from scipy import sparse
help(sparse)其中显示了可以表示的7种稀疏矩阵类型:There are seven available sparse matrix types:
1. csc_matrix: Compressed Sparse
转载
2023-09-30 21:01:00
148阅读
# 使用Python实现稀疏编码
稀疏编码(Sparse Coding)是一种表示信号的方法,旨在用比原始特征更少的基元素进行信号近似。这种方法在图像处理、信号处理及机器学习等领域广泛应用。本文将介绍稀疏编码的基本概念,并通过 Python 示例演示如何实现稀疏编码。
## 什么是稀疏编码?
稀疏编码通过利用“稀疏表示”的特征来缩减数据冗余。自然界中的信号通常是稀疏的,也就是说在某种变换下,
目前已有很多方法和技术用于构造分类模型,如决策树、神经网络、贝叶斯方法、Fisher线性分析(Fld)以及支持向量机(Support Vector Machine, SVM)。基于超完备字典的信号稀疏分解是一种新的信号表示理论,其采用超完备的冗余函数系统代替传统的正交基函数,为信号自适应的稀疏扩展提供了极大的灵活性。稀疏分解可以实现数据压缩的高效性,更重要的是可以利用字典的冗余特性捕捉信
转载
2024-06-08 17:16:27
104阅读
一、前言稀疏表示是自上世纪90年代开始,从人眼的视觉感受野获得启示,逐渐被人们所研究。现在已经发展为一种重要的信息表示方法。所谓稀疏表示是指,一个信号在过完备字典中,可以由少数个原子线性表达,其数学模型可以表达如下:这个数学模型解算是一个NP-hard问题,也就是说只能通过穷举去获得最优解,其时间复杂度很大,几乎无法获得其精确的解算。在这种情况下,我们常用贪婪算法去获得该模型的次最优解。本文介绍一
转载
2023-07-28 15:59:17
186阅读
Ajax操作如何实现跨域请求? Ajax通过XMLHttpRequest能够与远程的服务器进行信息交互,另外XMLHttpRequest是一个纯粹的Javascript对象,这样的交互过程,是在后台进行的,用户不易察觉。 因此,XMLHTTP实际上已经突破了原有的Javasc
稀疏矩阵的基本概念稀疏矩阵也是一种比较特殊的矩阵类型,但比起上一节提到的特殊矩阵类型,它特殊的地方不在于元素的分布而是在于稀疏矩阵中非0元素的个数s相对于矩阵元素的总个数t非常小。例如一个100*100的矩阵,若其中只有100个非0元素,就可称其为稀疏矩阵。稀疏矩阵中元素的位置分布一般是随机的。稀疏矩阵的三元组表示三元组就是指用三种属性来表示某个节点。由于稀疏矩阵的元素分布一般没有规律,就是说不能
转载
2024-04-10 04:51:49
149阅读
矩阵的压缩存储一、矩阵的分类1、特殊矩阵:其矩阵值在在矩阵中分布有规律 2、稀疏矩阵:矩阵的非零值在矩阵中占比小于0.05的矩阵,即零值占比在95%以上 3、一般矩阵:不属于上面的两种矩阵二、矩阵的存储方式1、特殊矩阵的存储方式1、特殊矩阵包括三角矩阵,带状矩阵 都是使用顺序存储2、稀疏矩阵的存储方式稀疏矩阵的存储方式有两种,其一:三元组顺序表(顺序存储)其二:十字链表(链式存储)1、稀疏矩阵的三
转载
2023-09-29 19:49:22
433阅读
信号的定义:信号一般表现为随时间变化的某种物理量。信号的表现形式:通常表现为随若干变量而变化的某种物理量。信号的数学描述:可以描述为一个或多个独立变量的函数。( 独立变量,即一个量改变不会引起除因变量以外的其他量的改变)信号的分类按照信号的确定性划分:确定信号与随机信号按照信号自变量取值的连续性划分:连续时间信号与离散时间信号按照信号的周期性划分:周期信号与非周期信号按照时间函数的可积性划分:能量
深度学习稀疏掩码图像分类
在当今的计算机视觉领域,稀疏掩码图像分类逐渐成为了一项热门的研究主题。该技术可以在众多应用中提供显著的性能提升,例如医学影像分析、卫星图像分类等。然而,由于掩码的稀疏性和不确定性,对其进行准确分类是一项挑战。
> 用户反馈:
> “我在使用深度学习来处理稀疏掩码图像分类时发现准确度不高,尤其是在复杂背景下的图片。我希望有人可以提供一些方案来解决这个问题。”
为了
分布式算法设计1).MapReduce 在Map和Reduce两个基本算子抽象下,所谓Hadoop和Spark分布式计算框架并没有本质上的区别,仅仅是实现上的差异。阅读了不少分布式算法的实现(仅仅是实现,不涉及原理推导),大部分思路比较直观,大不了几个阶段的MapReduce就可以实现。这里主要介绍一个曾经困扰我好久且终于柳暗花明的问题,即“大规模稀疏矩阵乘法”。
转载
2023-11-11 16:31:34
179阅读
数据结构与算法题型——chapter 2:稀疏矩阵&内存计算&广义表pta错题集稀疏矩阵一般的压缩存储方法是三元组和十字链表稀疏矩阵:矩阵压缩之后在另一个数组中的下标表示要掌握三个方法:带入排除法、递推法、计算法带入排除就是把特殊情况带入选项中验证是否满足,从而排除选项之后得到正确结果递推法:将数据列举出来,然后发现规律,从而得到一般表达式,然后与选项比对计算法:一定要熟悉等差数列
转载
2023-10-30 17:35:33
72阅读
Python稀疏矩阵1. 导入模块2. SciPy中的稀疏矩阵2.1 坐标列表格式 COO2.2 格式转换2.3 压缩列格式和压缩行格式 CSR/CSC3. 创建稀疏矩阵3.1 稀疏矩阵的可视化3.2 稀疏矩阵线性代数3.3 线性方程组3.4 LU分解3.5 特征值问题 数组和矩阵是数值计算的基础元素。目前为止,我们都是使用NumPy的ndarray数据结构来表示数组,这是一种同构的容器,用于存
转载
2023-08-25 22:48:50
397阅读
稀疏数组在数组中,若数值为0的元素数目远远多于非0元素的数目,并且非0元素分布没有规律时,则称该矩阵为***稀疏数组。***压缩稀疏数组稀疏数组的压缩方法: 1.先遍历数组one得到数组的行(n),列(m),非零值(y)的数目, 2.构建一个(n+1,3)的数组temp, 3,temp[0]存储遍历得到的行,列,和非零值的数目 4,temp的其他行存储one中非零值的行,列下标和值稀疏数组还原1.
转载
2023-10-15 13:59:32
60阅读
稀疏表示分类(Sparse Representation for Classification,简称SRC)是一项在模式识别和信号处理中应用广泛的技术。它基于
原创
2024-03-18 10:47:38
277阅读
Highlight作为一种 sparse representation based classification method(SRC) 分类方法,利用训练集中图像的稀疏线性表示 testing image,加上稀疏误差项对于图像线性表示误差进行补偿,从而在此基础上进行对应类别的判断。传统的 SRC 方法中,认为稀疏线性表示的误差项是 pixel-wise sparse (以 L1范数的形式建模)
转载
2023-11-24 09:08:27
97阅读
基于稀疏表示的图像超分辨率 摘要:本文提出了一种基于稀疏信号表示来实现单幅图像超分辨率重建的新方法。研究图像的统计数据表明,图像块可以表示为选择适当超完备字典的稀疏线性组合形式,通过这种观测报告的启发,我们寻求一种对低分辨率输入图像块的稀疏表示,然后用此稀疏表示的系数来生成高分辨率输出。压缩感知理论(Compressive Sensing,CS)指出,一幅图像能够在非常苛刻的条件下由它的一组稀疏表
转载
2023-11-14 13:47:24
3阅读
其实我们可以把他变成一个数组来表示,如下图所示。 我们可以看到原始数组中,
原创
2022-01-14 10:47:00
49阅读
在处理稀疏矩阵乘以稀疏矩阵的问题时,尤其在 Python 环境中,我们需要利用高效的存储和计算方式,以避免不必要的资源浪费。本文将详细记录解决“Python 稀疏矩阵乘稀疏矩阵”问题的过程,包括环境准备、集成步骤、配置详解、实战应用、性能优化和生态扩展。
### 环境准备
确保您有合适的环境来运行 Python 代码。推荐使用 Python 3.6 及以上版本,并安装 `scipy` 和 `n
此代码来自《学习OpenCV3中文版》第16章源代码有点小错误,已修改LK光流法的基本思想基于以下三个假设。1.亮度恒定;2.时间持续性或“微小移动”;3.空间一致性。灰度不变假设:同一个空间点的像素灰度值,在各个图像中是固定不变的。对于t时刻在(x,y)处得像素,在t+dt时刻它运动到(x+dx,y+dy)处。有下式:对左边进行泰勒一阶展开,保留一阶项,得: 因为下一时刻的灰度等于之前
转载
2023-12-29 16:11:28
96阅读