关于OpenCV3的KMeans/GMM分割应用C++实现的DEMO–更换证件照片背景作者:Simon Song分割算法的应用1.KMEANS:是一种算法,主要过程: 流程图: 参数k–> 初始化中心点–>根据每个样本与中心的距离,分配编号–>对编号相同的样本,计算新的中心位置–>当距离(D)小于阈值(T)或迭代(Iteration)次数大于迭代次数(C)->
转载 2024-08-09 10:24:23
51阅读
本文是对《Python数据分析与挖掘实战》实战篇第二章——航空公司客户价值分析上机实验的记录。 实验目的为:了解K-Means算法在客户价值分析实例中的应用。利用Pandas快速实现数据Z-score(标准差)标准化以及用Scikit-Learn的库实现K-Means。具体实验过程分为三部分:LRFMC标准化完成K-Means画出中心特征图1. LRFMC标准化利用Pandas程
转载 2024-09-22 12:32:08
44阅读
简介kmeans作为一种算法,可以将数据贴以标签,进而进行数据或图像的数据.算法原理Step 1 :从数据集中随机选取一个样本点作为初始中心C1;Step 2:首先计算每个样本与当前已有中心之间的最短距离(即最近的中心的距离),用D(x)表示;接着计算每个样本点被选为下一个中心的概率D(x)2∑ni=1D(xi)2。最后,按照轮盘法选择出下一个中心;Step 3:重复第
转载 2024-06-05 12:12:29
105阅读
魏老师学生——Cecil:学习OpenCV-机器视觉之旅 T恤大小问题工作原理OpenCV中的K值解释函数参数—— cv2.kmeans()仅有一个特征的数据代码演示含有多个特征的数据代码演示颜色量化代码演示 T恤大小问题案例分析:服装厂要生产T恤,需要获得尺寸数据,所以收集一批身高体重信息并且绘在坐标系上。为了便于生产,需要将数据分类。K值可以把所有数据分为N组。工作原理把图中数据分为
转载 2024-04-25 11:09:44
110阅读
kmeans是非常经典的算法,至今也还保留着较强的生命力,图像处理中经常用到kmeans算法或者其改进算法进行图像分割操作,在数据挖掘中kmeans经常用来做数据预处理。opencv中提供了完整的kmeans算法,其函数原型为:double kmeans( InputArray data, int K, InputOutputArray bestLabels, TermCriteria cri
解决大规模优化问题通常始于图分割,这就意味着需要将图的顶点分割,然后在不同的机器上处理。我们需要确保具有几乎相同的大小,这就催生了均衡图分割问题。简单地说,我们需要将给定图的顶点分割到 k 个几乎相等的中,同时尽可能减少被分割切割的边数。这个?NP 困难问题在实践中极其困难,因为适用于小型实例的最佳逼近算法依赖半正定规划,这种规划对更大的实例来说不切实际。 这篇博文介绍了我
KMeans方法:KMeans是一种无监督的学习方法,对于一个分类问题,我们在输入分类数目之后,需要初始化每个分类的中心位置。用距离度量的方法进行归类,任意一个样本离中心距离越近,就把它归为某类。 步骤一: 假设上图有一个2分的样本,样本编号分别为1、2,在图中使用“X”表示,距离1样本近的,则把样本标记为1,距离2样本近的,就把样本标记为2,得到如下图:步骤二: 根据分类好的样本重新计算中心点
转载 2024-05-07 09:32:04
94阅读
一、宽数据1、宽数据1.在宽数据这个页面可以看到宽平台集成好的各大类数据,如下图,点击可以查看详情与用法 2.但实际上可能有些数据要在API文档里才比较容易能找到,比如龙虎榜数据等。这时用ctrl+f进行网页搜索可以快速搜索需要的数据。  二、几种常用数据的取用方法1、获取指数成分股成分股指数是指从指数所涵盖的全部股票中选取一部分较有代表性的股票作为指数样本,
K-means算法算是个著名的算法了,不仅容易实现,并且效果也不错,训练过程不需人工干预,实乃模式识别等领域的居家必备良品啊,今天就拿这个算法练练手。 总结来说,这个算法的步骤如下:1.随机选取样本中的K个点作为中心 2.计算所有样本到各个中心的距离,将每个样本规划在最近的中 3.计算每个中所有样本的中心,并将新的中心代替原来的中心 4.检查新老中心的距离,如果距离超过规定
转载 2024-02-19 21:02:38
93阅读
# Python分割:理论与实践 聚类分析是一种无监督学习方法,它将数据集分成几个组(或称为“簇”),使得同一组内的数据点在某种意义上是相似的,而不同组之间则相对不相似。Python提供了丰富的库和工具,使得聚类分析变得容易且直观。本文将介绍基本的概念,以及如何使用Python实现分割,并给出一个实际示例。 ## 的基本概念 是将数据划分为多个组的过程。这些组称为簇,簇内
目标了解如何在OpenCV中使用cv2.kmeans()函数进行数据理解参数输入参数sample:它应该是np.float32数据类型,并且每个特征都应该放在单个列中nclusters(K):结束条件所需的簇数criteria:这是迭代终止标准条件。满足此条件后,算法迭代将停止。实际上,它是3个参数的元组,分别是(type, max_iter, epsilon):type 终止条件的类型,它具
转载 2024-04-06 12:52:08
291阅读
1、输入原始图片 2、代码实现:#include<opencv2\opencv.hpp> #include<iostream> using namespace std; using namespace cv; int main() { Mat src = imread("C:/Users/lzg/Desktop/opencv_test/Project1/1
转载 2023-06-21 22:01:24
141阅读
图像(一)K-means(K均值)1.1 Scipy包1.2 图像1.3 在主成分上可视化图像1.4 像素(二)层次(三)谱 所谓,就是将相似的事物聚集在一 起,而将不相似的事物划分到不同的类别的过程,是数据分析之中十分重要的一种手段。比如古典生物学之中,人们通过物种的形貌特征将其分门别,可以说就是 一种朴素的人工。如此,我们就可以将世界上纷繁复杂的信息
转载 2023-10-23 08:36:34
95阅读
# Python 图像分割的应用探索 图像分割是计算机视觉中一项重要的任务,它的目的是将图像分解成多个部分,以便于进行进一步的分析。则是数据挖掘中的一种技术,通过分组特征相似的数据点来实现可视化和分析。结合这两种技术,可以实现对图像的有效分割。本文将详细介绍Python中图像分割的实现,并提供具体的代码示例。 ## 什么是图像分割? 图像分割是将图像分成多个像素集合的过程,这
原创 2024-08-21 08:36:07
25阅读
C-means算法实战 — 地表植被分类/数字 文章目录C-means算法实战 --- 地表植被分类/数字一、C均值算法简介二、sklearn中make_blobs的用法简介三、地表植被分类实验代码及结果四、拓展1.观察当事先设定的数量不够时,C-means(k-means)法的分类结果会发生什么变化。2. 手写k_means算法3.C-means算法,实现数字。 一、C均
1. k-means算法思想k-means算法中文名叫做k均值。它是一种非监督算法,如有一堆数据,但是知道这些数据有k个,具体每一个数据点所属分类不知道。此时就需要用k-means算法,它可以把原先的数据分成k个部分,相似的数据就聚在一起。2. k-means算法步骤共有3个步骤:初始化–随机生成K个初始“均值”(质心);分配–通过将每个观测值与最近的质心相关联来创建K个,遍历所有点
在上一篇文章中介绍完了reg2reg的时序分析模型,这一篇文章着重来介绍以下pin2reg的时序分析模型。pin2reg时序分析pin2reg时序分析基本模型有两种:源同步的FPGA输入时序分析模型,系统同步的FPGA输入时序分析模型。 上图为源同步的FPGA输入时序分析模型,时钟源为上游器件和下游器件(fpga)同时提供时钟。此模型不利于传送高速数据,基本已被淘汰。 上图为源同步的FPGA输入时
 java简单实现算法 第一个版本有一些问题,,(一段废话biubiu。。。),,我其实每次迭代之后(在达不到收敛标准之前,中心的误差达不到指定小的时候),虽然重新算了中心,但是其实我的那些点并没有变,可是这个程序不知道咋回事每次都把我原先随机指定的中心给变成了我算的中心;怎么用,按照指示来就行了,不用读文件(源码全都是可以运行,不足之处还望批评指正)输出的
        谱(spectral clustering)是一种基于图论的算法,第一步是构图:将数据集中的每个对象看做空间中的点V,将这些点之用边E连接起来,距离较远的两个点之间的边权重值较低、距离较近的两个点之间的边权重值较高,这样就构成了一个基于相似度的无向权重图G(V,E)。第二步是切图:按照一定的切边
转载 2024-01-30 07:01:32
248阅读
如何理解模糊事物间的界线,有些是明确的,有些则是模糊的。当涉及到事物之间的模糊界线时,需要运用模糊聚类分析方法。 如何理解模糊的“模糊”呢:假设有两个集合分别是A、B,有一成员a,传统的分类概念a要么属于A要么属于B,在模糊的概念中a可以0.3属于A,0.7属于B,这就是其中的“模糊”概念。模糊聚类分析有两种基本方法:系统法和逐步法。系统法个人理解类似于密度算法,逐
  • 1
  • 2
  • 3
  • 4
  • 5