1. k-means算法思想k-means算法中文名叫做k均值。它是一种非监督聚类算法,如有一堆数据,但是知道这些数据有k个类,具体每一个数据点所属分类不知道。此时就需要用k-means聚类算法,它可以把原先的数据分成k个部分,相似的数据就聚在一起。2. k-means算法步骤共有3个步骤:初始化–随机生成K个初始“均值”(质心);分配–通过将每个观测值与最近的质心相关联来创建K个聚类,遍历所有点
KMeans方法:KMeans是一种无监督的学习方法,对于一个分类问题,我们在输入分类数目之后,需要初始化每个分类的中心位置。用距离度量的方法进行归类,任意一个样本离中心距离越近,就把它归为某类。 步骤一: 假设上图有一个2分类的样本,样本编号分别为1、2,在图中使用“X”表示,距离1样本近的,则把样本标记为1,距离2样本近的,就把样本标记为2,得到如下图:步骤二: 根据分类好的样本重新计算中心点
转载
2024-05-07 09:32:04
94阅读
1、输入原始图片 2、代码实现:#include<opencv2\opencv.hpp>
#include<iostream>
using namespace std;
using namespace cv;
int main() {
Mat src = imread("C:/Users/lzg/Desktop/opencv_test/Project1/1
转载
2023-06-21 22:01:24
141阅读
Kmeans算法流程从数据中随机抽取k个点作为初始聚类的中心,由这个中心代表各个聚类 计算数据中所有的点到这k个点的距离,将点归到离其最近的聚类里 调整聚类中心,即将聚类的中心移动到聚类的几何中心(即平均值)处,也就是k-means中的mean的含义 重复第2步直到聚类的中心不再移动,此时算法收敛 最后kmeans算法时间、空间复杂度是: 时间复杂度:上限为O(tKmn),下限为Ω(Kmn)其中,
转载
2024-07-16 11:24:28
100阅读
目标了解如何在OpenCV中使用cv2.kmeans()函数进行数据聚类理解参数输入参数sample:它应该是np.float32数据类型,并且每个特征都应该放在单个列中nclusters(K):结束条件所需的簇数criteria:这是迭代终止标准条件。满足此条件后,算法迭代将停止。实际上,它是3个参数的元组,分别是(type, max_iter, epsilon):type 终止条件的类型,它具
转载
2024-04-06 12:52:08
291阅读
K-means算法算是个著名的聚类算法了,不仅容易实现,并且效果也不错,训练过程不需人工干预,实乃模式识别等领域的居家必备良品啊,今天就拿这个算法练练手。 总结来说,这个算法的步骤如下:1.随机选取样本中的K个点作为聚类中心 2.计算所有样本到各个聚类中心的距离,将每个样本规划在最近的聚类中 3.计算每个聚类中所有样本的中心,并将新的中心代替原来的中心 4.检查新老聚类中心的距离,如果距离超过规定
转载
2024-02-19 21:02:38
93阅读
1. Kmeans聚类算法原理 1.1 概述 K-means算法是集简单和经典于一身的基于距离的聚类算法 采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。 该算法认为类簇是由距离靠
转载
2024-08-09 16:06:41
53阅读
牛顿第一运动定律:简称牛顿第一定律。又称惯性定律、惰性定律。常见的完整表述:任何物体都要保持匀速直线运动或静止状态,直到外力迫使它改变运动状态为止。科普知识前言 又是一期再见时,受疫情影响,小编已在家中上课两周了,一个多月没出过门了,实在是种说不出的感受,相信大家也一样,虽然待在家里,但不要除了手机还是手机,在study的路上,我们一直在前行。 &
Kmeans聚类算法1 Kmeans聚类算法的基本原理 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。假设要把样本集分为k个类别,算法描述如下: (1)适当选择k个类的初始中心,最初一般为随机选取; (2)在每次迭
转载
2023-08-12 15:14:24
111阅读
Kmeans算法及简单案例Kmeans算法流程选择聚类的个数k.任意产生k个聚类,然后确定聚类中心,或者直接生成k个中心。对每个点确定其聚类中心点。再计算其聚类新中心。重复以上步骤直到满足收敛要求。(通常就是确定的中心点不再改变。)Kmeans算法流程案例将下列数据点用K-means方法进行聚类(这里使用欧式距离作为度量,K取值为2) P1~P15这15个数据点的二维坐标图如下:指定P1、P2为初
转载
2023-08-25 16:25:56
167阅读
1.k均值聚类简介k均值聚类是一种无监督学习方法,当数据量小,数据维度低时,具有简单、快速、方便的优点,但是当数据量较大时,其速度较慢,也容易陷入局部最优。2. 步骤和以前一样,kMeans聚类的原理在网上有很多讲解,所以这里不在赘述,直接给出步骤,而通过伪代码将是一个描述步骤的不错选择:随机初始化k个聚类中心
while 有样本所属的聚类中心发生改变时:
for 每个样本i:
初始化所有簇
转载
2023-10-13 12:34:35
117阅读
理论Python实现
原创
2022-11-02 09:43:44
191阅读
opencv图像处理之K-means聚类算法opencv图像处理之K-means聚类算法kmeans算法过程与简单的理解基于Opencv的c++代码 opencv图像处理之K-means聚类算法kmeans是非常经典的聚类算法,至今也还保留着较强的生命力,图像处理中经常用到kmeans算法或者其改进算法进行图像分割操作,在数据挖掘中kmeans经常用来做数据预处理。opencv中提供了完整的km
转载
2024-07-21 07:41:43
73阅读
K-meansK-means算法简述K-means算法思考常用的几种距离计算方法KMean算法的算法优缺点与适用场景优点缺点代码2D数据3D数据 K-means算法简述K-means算法,也称为K-平均或者K-均值,一般作为掌握聚类算法的第一个算法。这里的K为常数,需事先设定,通俗地说该算法是将没有标注的 M 个样本通过迭代的方式聚集成K个簇。在对样本进行聚集的过程往往是以样本之间的距离作为指标
转载
2024-04-15 13:37:58
69阅读
K-means聚类算法(事先数据并没有类别之分!所有的数据都是一样的) K-means聚类1 概述2 核心思想3 算法步骤4 代码实现 1 概述K-means算法是集简单和经典于一身的基于距离的聚类算法采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。2 核心思想通过迭代寻找k个类簇的一种划分方案,
转载
2024-04-05 13:00:09
137阅读
无监督学习:【机器学习】使用scikitLearn对数据进行聚类:Kmeans聚类算法的应用及密度聚类DBSCAN【机器学习】使用scikitLearn对数据进行聚类:高斯聚类GaussianMixture【机器学习】使用scikitLearn对数据进行聚类:7种异常和新颖性检测方式聚类是典型的无监督学习的一种,它将相似的元素聚集在一起。 聚类的应用有很多,比如降维,将一群实例点集聚成K类,每个实
转载
2024-05-07 19:51:07
89阅读
聚类算法简介kmeans算法是无监督学习算法,它的主要功能就是把相似的类别规到一类中,虽然它和knn算法都是以k开头,但是knn却是一种监督学习算法.那我们怎样去区分样本间的相似性呢?其实计算相似性的方式有很多,其中最常用的是欧示距离。聚类算法的实现原理假设我们有个样本点,这个样本点有个分类,首先我们随机选取个样本点作为质心,我们遍历个样本点,计算与每个质心的距离,找与哪一个质心的距离最小,那么就
转载
2023-08-15 17:19:45
117阅读
python实现kmeans与kmeans++方法
一.kmeans聚类:基本方法流程1.首先随机初始化k个中心点2.将每个实例分配到与其最近的中心点,开成k个类3.更新中心点,计算每个类的平均中心点4.直到中心点不再变化或变化不大或达到迭代次数优缺点:该方法简单,执行速度较快。但其对于离群点处理不是很好,这是可以去除离群点。kmeans聚类的主要缺点是
转载
2023-06-27 10:36:22
194阅读
代价函数最小import numpy as npimport matplotlib.pyplot as pltfrom sklearn.datasets import load_irisdef distance(vex
原创
2022-11-10 14:18:13
104阅读
1. 聚类问题 所谓聚类问题,就是给定一个元素集合D,其中每个元素具有n个可观察属性,使用某种算法将D划分成k个子集,要求每个子集内部的元素之间相异度尽可能低,而不同子集的元素相异度尽可能高。 2. K-均值算法简介 k-means算法,也被称为k-平均或k-均值,是一种得到最广泛使用的聚类算法。
原创
2022-03-11 15:04:19
126阅读