Firmament特色使用 RT-Thread 嵌入式操作系统,Fatfs 文件系统,完整的系统功能支持 (如跨进程通信,文件管理,参数系统等)基于 Pixhawk 硬件平台开发,完美支持 Pixhawk 硬件ADRC 控制和 PID (串级) 控制支持 Mavlink 协议 (QGC 地面站)支持 Gazebo 硬件在环 (HITL) 仿真Msh 指令系统,提供丰富以及可扩展
转载
2023-12-20 10:00:29
635阅读
点赞
这是游戏里面很常用的一个功能模块,通过操控遥控杆控制物体的移动 Joystick
实现思路遥控杆的构造分为中间的控制点和外层的圆形,首先给遥控杆绑定个触控事件,然后在touch_move的时候让触控杆保持在圆形中,同时把鼠标的位置偏移信息传给需要移动的物体。控制杆逻辑用户点击的时候分两种情况,一种是用户的点击位置能够让控制点完全落在圆形内,这个时候让控制点直接移动到用户点击的位置即可;
转载
2024-06-26 14:31:34
31阅读
DJI OSDK开发笔记(N3飞控)(1)——开发工作流程API层次结构硬件设置一般设置数据串口连接器引脚排列连接到记载计算机软件环境设置所有平台下载SDK和所需工具更新固件启用OSDK API板载SDK应用注册飞行平台激活Ubuntu Linux 平台Toolchain权限带有ROS的LinuxToolchain权限QtToolchain API层次结构 Vehicle 类用于管理 SDK(例
转载
2023-10-19 10:59:04
273阅读
一.飞控固件目前来说,主流开源的飞控有两类:PX4和APM。从我自己的使用经验来看:对于你要使用多旋翼或者进行自主流程的话我推荐使用PX4固件。如果简单的固定翼飞行我推荐APM固件。pixhawk、px4、APM、ArduPilot这四个的关系如何呢?pixhawk是硬件平台,PX4是pixhawk的原生固件,专门为pixhawk开发。PX4官方固件文档 APM(Ardupilot Me
最近做的一个国防背景的field UAV项目,细节不能多谈,简单写点技术体会。1、PX4/Pixhawk飞控软件架构简介PX4是目前最流行的开源飞控板之一。PX4的软件系统实际上就是一个firmware,其核心OS为NuttX实时ARM系统。其固件同时附带了一系列工具集、系统驱动/模块与外围软件接口层,所有这些软件(包括用户自定义的飞控软件)随OS内核一起,统一编译为固件形式,然后上传到飞控板中,
# 飞控系统软件架构实现指南
## 引言
飞控(飞行控制)系统是无人机(UAV)核心的软件架构,负责处理传感器数据、决策和控制执行器的任务。对于刚入行的小白来说,理解飞控系统的架构和实现流程是非常重要的。在本文中,我们将详细探讨飞控系统的实现流程,并提供相关的代码示例与注释。
## 实现流程概述
下面是实现飞控系统软件架构的基本步骤:
| 步骤编号 | 步骤描述
写在前面开这个专栏的目的主要是深感自己对飞控软件、算法的知识点过于杂乱,很久没有进行系统的总结了,因此决定写几篇文章记录一些飞控开发过程的知识点。主要是针对一些软件、算法部分进行讨论,如内容有错误,欢迎指出。2019.03.02更新距离专栏的第一篇文章已经快2年半了,最近在回看文章的时候,发现有些地方写得不尽如人意,或亦是之前的技术水平不足,导致对一些问题的理解不深刻。由此,萌生了将已有文章进行更
转载
2024-06-09 10:08:17
422阅读
1. FPGA baed platforms(Field-Programmable Gate Array)即现场可编程门阵列1)Phenix Pro(RobSense Tech公司开发, 固件开源为:基于自主定制的无人机实时操作系统(UOS))System on a Chip (SoC) designed and developed by RobSense Tech, founded in 201
飞控主要包括主控处理器MCU(main control unit)和惯性导航模块IMU(Inertial Measurement Unit)四轴则必须配备3轴陀螺仪,是四轴飞行器的机械结构、动力组成特性决定的。再辅以3轴加速度传感器,这6个自由度,就组成了飞行姿态稳定的基本部分,也是关键核心部分惯性导航模块,简称IMU。IMU感知飞行器在空中的姿态,将数据送给主控处理器MCU。主控处理器MCU将根
转载
2024-09-12 09:22:57
166阅读
ArduPilot开源飞控系统之简单介绍1. 源由2. 了解&阅读2.1 ArduPilot历史2.2 关于GPLv32.3 ArduPilot系统组成2.4 ArduPilot代码结构3. 后续3.1 DIY-F4503.2 DIY-Mark43.3 软件设计4. 参考资料 ArduPilot是一个可信赖的自动驾驶系统,为人们带来便利。为此,提供了一套全面的工具,几乎适用于任何车辆、无
主处理器运行NuttX实时操作系统,所有功能都通过任务进程实现[4]。主要的进程有传感器数据采集、姿态估算、姿态控制、飞行器状态识别与切换、协处理器控制、日志记录。进程间进行通信是程序结构的重要部分。 也就是说在飞机中就有几个主要进程控制飞机。每个进程负责些什么呢。 如图3所示, 传感器数据采集进程: 采集的所有传感器数据。 姿态估计进程: 利用传感器数据估算出飞行器当
目录1.加速度计校准。2.指南针校准。3.遥控器校准。安装完固件后,无人机并不能马上解锁起飞,必须进行校准加速度计、指南针、遥控器,下面就逐一进行校准,该环境使用的是APM2.8、Mission Planner1.3.70地面站软件。1.加速度计校准。校准前应准备水平的地面或桌面,平整的方形硬壳盒子作为姿态参考。将飞控主板固定在盒子上中央位置。通过数据线连接飞控和电脑,打开Mission Plan
转载
2023-09-13 21:30:01
438阅读
PID控制算法 PID控制器是一个结构简单并且成熟稳定的控制器,在工业上应用广泛。包括比例(Proportion)、积分(Integral)、微分(Differential)三个控制元素,三者是对系统偏差不同处理方式。比例控制 P 比例控制是基础,将反馈值和期望值的差值和一个参数KP进行相乘,表示这一个控制周期对误差的矫正力度,类似火车进入火车站时候的油门量。此参数过小会导致恢复力度不足以克制
转载
2024-07-01 08:15:17
88阅读
写在前面深感自己对飞控软件、算法的知识点过于杂乱,很久没有进行系统的总结了,因此决定写几篇文章记录一些飞控开发过程的知识点。主要是针对一些软件、算法部分进行讨论,如内容有错误,欢迎指出。1 飞控软件的基本模块无人机能够飞行主要是依靠传感器系统获取位姿信息并反馈到微处理器进行控制系统的运算。所以飞控软件设计主要负责搭建合理软件流程,使各功能模块协调有效的工作。一个飞控系统的基本工作主要有:
转载
2024-06-09 08:31:15
807阅读
前言之前我写了一篇关于无人机硬件架构的博客,接下来我继续写关于软件架构的。 什么是软件?百度百科里面软件的定义是“按照特定顺序组织的计算机数据和指令的集合”,在这里我们只需要理解为程序即可,也就是说我们的软件,是运行在计算机(不论是Intel还是AMD亦或者是ARM单片机,都可以叫计算机)的程序代码,大家在学习C++或者Python等语言的时候,书写的一个个小程序就是软件,我们在这里不对软件和程序
转载
2023-08-24 15:58:01
646阅读
国际空运在跨境物流运输中发挥着难以替代的作用,目前空中运输最多的载体还是飞机,各个飞机型号、货舱容量和载运量又不尽相同,下面是货代需要了解的常见机型有哪些以及它们的货舱容量跟载运量等相关基本知识。简单来说,飞机可以有三种分类:按机身尺寸分:窄体飞机:指机身宽度约为3米,舱内只有一条通道,一般只能在下舱内装载包装尺寸较小的散件货。如 B737、B757、MD-80、MD-90、A320、A321 等
四旋翼直升无人机本文为美国麻省理工学院(作者:Zachary Thompson Dydek)的博士学位论文,共139页。自适应控制被认为是未来高性能、关键安全系统(如高超声速飞行器)的关键技术之一。由于自适应飞行控制系统能够根据在线测量数据调整控制参数,从而提供了改进的性能和应对不确定性的增强鲁棒特性。自适应控制理论领域中的广泛研究使得稳定自适应系统的设计、分析和综合成为可能。当前我们的研究正在
1、飞控① 飞控的功能:实时获取无人机必要的导航信息,包括水平位置、速度、加速度、姿态角、角速度、运动航向等反馈数据,接收遥控器或者数传控制指令,实时控制无人机的飞行的位置、速度、姿态等状态,从而实现无人机的遥控/自主飞行任务。② 飞控系统的组成:传感器数据采集:加速度计、陀螺仪、磁力计、气压计、超声波、激光雷达测距、光流模块、GPS定位模块、机器视觉处理OPEMMV、VIO、视觉/激光雷达SLA
apm飞控如何编程 我们生活在一个信息社会中,新的进步一直使技术前景变得令人兴奋。 编程显然在使这些新技术成为可能的过程中起着至关重要的作用。 正如贡献者约瑟夫·奥丁格(Joseph Ottinger)指出的那样,编程是关于功能而非形式的。 他认为这是在完成某件事,而不是“符合现实世界的模型”。 应该清楚您希望代码执行什么。 如果您要解释自己最喜欢的运动队的表现,则不会详细说明每场比赛的每场比赛
转载
2024-01-11 15:33:06
64阅读
1.算法描述无人机是无人驾驶飞机的简称(Unmanned Aerial Vehicle),是利用无线电遥控设备和自备的程序控制装置的不载人飞机,包括无人直升机、固定翼机、多旋翼飞行器、无人飞艇、无人伞翼机。广义地看也包括临近空间飞行器(20-100 公里空域),如平流层飞艇、高空气球、太阳能无人机等。从某种角度来看,无人机可以在无人驾驶的条件下完成复杂空中飞行任务和各种负载任务,可以被看做是 “空