fft()函数简单到发指,一般使用时就两个参数fft(nparray,n),n还可以缺省。上代码:import numpy as np from scipy.fftpack import fft,ifft fft_y=fft(y) print(fft_y)执行结果:[180444.84 -0.j -1764.15187386-6325.24578909j
1引言  OFDM(正交频分复用)是一种多载波数字调制技术,被公认为是一种实现高速双向无线数据通信的良好方法。在OFDM系统中,各子载波上数据的调制和解调是采用FFT(快速傅里叶变换)算法来实现的。因此在OFDM系统中,FFT的实现方案是一个关键因素。其运算精度和速度必须能够达到系统指标。对于一个有512个子载波,子载波带宽20 kHz的OFDM系统中,要求在50 μs内完成512点的FFT运算。
转载 2月前
427阅读
FFT信号流图: 程序实现是这样:  程序流程如下图:  首先进行位逆转,其实很简单,就是把二进制的位逆转过来:Matlab的位逆转程序:function a=bitreverse(Nbit, num)%Nbit = 4;%num = 8;a = 0;b = bitshift(1,Nbit-1);for i = 1:Nbit;if((bitand(num,1)) == 1)
转载 2023-10-10 14:35:15
74阅读
在Linux操作系统中,数学(math)是非常重要的一个部分,它包含了许多用于数学运算的函数和工具。其中,FFT(Fast Fourier Transform 快速傅里叶变换)是一项重要且常用的数学运算,可以对信号进行频谱分析和处理。 在Linux环境下,使用FFT进行信号处理可以利用一些开源的数学,比如FFTW(Fastest Fourier Transform in the West)
原创 2024-04-03 10:48:26
291阅读
目录前言快速傅里叶变换之numpyopenCV中的傅里叶变换np.zeros数组cv2.dft()和cv2.idft()DFT的性能优化cv2.getOptimalDFTSize()覆盖法填充0函数cv2.copyMakeBorder填充0时间对比 前言在学习本篇博客之前需要参考 快速傅里叶变换之numpypython的numpy中的fft()函数可以进行快速傅里叶变换,import cv2
转载 2023-07-20 23:08:04
148阅读
傅里叶变换)其本质就是DFT,只不过可以快速的计算出DFT结果,要弄懂FFT,必须先弄懂DFT,DFT(DiscreteFourier Transform) 离散傅里叶变换的缩写,咱们先来详细讨论DFT,因为DFT懂了之后,FFT就容易的多了DFT(FFT)的作用:可以将信号从时域变换到频域,而且时域和频域都是离散的,通俗的说,可以求出一个信号由哪些正弦波叠加而成,求出的结果就是这些正弦波的幅度和
快速傅里叶变换介绍傅立叶原理表明:任何连续测量的时序或,都可以表示为不同频率的余弦(或正弦)波的无限叠加。FFT 是离散傅立叶变换的快速算法,可以将一个变换到频域。那其在实际应用中,有哪些用途呢?有些在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征(频率,幅值,初相位);FFT 可以将一个的频谱提取出来,进行频谱分析,为后续滤波准备;通过对一个系统的输入信
转载 2023-12-06 22:20:06
166阅读
1. FFT相关理论1.1 离散傅里叶变换(DFT)离散傅里叶变换(discrete Fourier transform) 傅里叶分析方法是信号分析的最基本方法,傅里叶变换是傅里叶分析的核心,通过它把信号从时间域变换到频率域,进而研究信号的频谱结构和变化规律。但是它的致命缺点是:计算量太大,时间复杂度太高,当采样点数太高的时候,计算缓慢,由此出现了DFT的快速实现,即下面的快速傅里叶变换FFT。1
一、前言  FFT运算是目前最常用的信号频谱分析算法。在本科学习数字信号处理这门课时一直在想:学这些东西有啥用?公式推来推去的,有实用价值么?到了研究生后期才知道,广义上的数字信号处理无处不在:手机等各种通信设备和WIFI的物理层信号处理、摄像头内的ISP、音频信号的去噪等。各种算法中,FFT是查看信号本质,也就是频谱的重要手段。之前仅直接调用FFT/IFFT IP核,今天深入探讨下算法本身和实现
转载 2023-07-11 16:15:20
416阅读
之前在自己笔记本上配置过一次caffe,只用的cpu,啊,简直不能要。。。后来换了TX1试试,又得重新编译一边caffe,每次在编译python包时总是难以满足,尝试好久,有点心得,主要整理一下python依赖解决过程,免得遗忘。1、开始步骤Note:Makefile也要修改一下,不只是Makefile.config,不然会出现找不到lhdf5_hl 和 lhdf5参考文章:#出现下面错误 /us
(一)离散傅里叶变换(DFT)DFT是傅里叶变换在时域和频域上都呈现离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。即使对有限长的离散信号作DFT,也应该将其看作经过周期延拓成为周期信号再作变换。在实际应用中通常采用快速傅里叶变换以高效计算DFT。基本性质:线性
转载 2023-08-17 17:16:28
361阅读
# FFT下载与使用指南 快速傅里叶变换(FFT)是一种有效的算法,用于计算离散傅里叶变换(DFT)及其反变换。这种算法在信号处理、图像处理、音频分析等多个领域里都有广泛应用。在Python中,`numpy`提供了FFT的实现,可以非常方便地进行傅里叶变换。本文将介绍如何下载和使用这一,包括基本的代码示例和应用场景。 ## 安装numpy 在使用FFT之前,需要确保已经安装了`num
# 使用FFT去噪的Python教程 ## 引言 快速傅里叶变换(FFT)是一种高效的算法,用于计算离散傅里叶变换(DFT)及其逆变换。它在信号处理中的应用广泛,尤其是在去噪方面。本文将指导新手开发者如何在Python中使用FFT进行去噪。我们将分步骤进行,每一步都将提供必要的代码和解释。 ## 整体流程 我们可以将FFT去噪的过程划分为以下几个步骤: | 步骤编号 | 步骤描述
原创 9月前
213阅读
看到的跟大家分享一下。。。。 FFT是离散傅立叶变换的快速算法,可以将一个信号变换 到频域。有些信号在时域上是很难看出什么特征的,但是如 果变换到频域之后,就很容易看出特征了。这就是很多信号 分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱 提取出来,这在频谱分析方面也是经常用的。      虽然很多人都知道FFT是什么,可以用来做什么,怎么去 做,但是却
ffmpeg下有7个library,分别是:libavutillibswscalelibswresamplelibavcodeclibavformatlibavdevicelibavfilter本文内容主要源于ffmpeg官网对各个的简介ffmeglibavutil:(通用工具) libavutil十一个实用的工具用于辅助可移植的多媒体编程。它包含安全的可移植的字符串函数,随机数生成器,数据
FFT结果的物理意义    FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。这 就是很多信号分析采用FFT变换的原因。另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。     虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知
转载 2024-01-06 20:35:58
38阅读
FFT理论不明白的童鞋可以来这里( FFT学习笔记<理论篇>): 在了解完FFT的理论与算法流程之后,最重要的当然就是写代码啦,下面的两份代码将展示FFT在多项式乘法与高精度乘法中的运用。在那之前,还有一个重要的东西: 因为下面写的是迭代的FFT代码,而不是采用递归,所以多了一个对rev[]的处理: 我们假设每次将奇数项元素提出来之后,将其放到了序列的最后,如下: 0123456
转载 2023-11-14 15:31:57
118阅读
# 快速傅里叶变换(FFT)的原理与实现 ## 引言 傅里叶变换是一种常用的信号处理技术,它将时域信号转换为频域信号,可以从频域上分析信号的频率成分。傅里叶变换的计算复杂度较高,而快速傅里叶变换(FFT)是一种高效的算法,可以加速傅里叶变换的计算过程。 本文将介绍快速傅里叶变换的原理,讨论其在Java中的实现,并提供相应的代码示例。 ## 快速傅里叶变换原理 快速傅里叶变换是一种基于分治
原创 2023-10-05 12:50:12
45阅读
## 如何在Java中使用FFT 你好,作为一名经验丰富的开发者,我将为你解释如何在Java中使用FFT(快速傅里叶变换)。FFT是一种用于频域信号处理的重要算法,可以将时域信号转换为频域信号,广泛应用于信号处理、图像处理等领域。 ### 整体流程 首先,让我们看一下整个实现“java 使用fft”的流程。可以使用以下表格来展示每个步骤: ```mermaid erDiagram
原创 2024-04-12 03:48:08
49阅读
# Java FFT 包:科普文章 ## 引言 傅里叶变换(Fourier Transform)是一种十分重要的数学工具,在信号处理、图像处理以及其他领域中有着广泛的应用。傅里叶变换可以将一个信号从时域转换到频域,使得我们能够分析信号中各个频率的成分。在计算机科学领域,我们经常需要进行傅里叶变换来处理音频、图像等数据。Java 中有许多优秀的 FFT 包可以帮助我们进行傅里叶变换的计算,本文将介
原创 2023-08-09 10:39:06
638阅读
  • 1
  • 2
  • 3
  • 4
  • 5