GMM算法 第一章引子假设放在你面前有5篮子鸡蛋,每个篮子有且仅有一种蛋,这些蛋表面上一模一样,就是每一种蛋涵盖有且只有一种维生素,分别是A、B、C、D、E。这个时候,你需要估计这五个篮子的鸡蛋的平均重量μ。 首先有个总的假设: 假设每一种维生素的鸡蛋的重量都服从高斯分布。 这个时候,因为每个篮子的鸡蛋包含有且只有一种,并且彼此之间相同的维生素,即每个篮子的鸡蛋都服从相同的分布,这个时候
 看了很多博文,包括《统计学习知识》和西瓜书上对GMM算法的推导,总有些重要的步骤被略去(比如从公式一推到公式二,书上直接给出结果,却没有具体步骤),导致理解整个算法非常困难。后来幸运地发现一篇博文,使用了对我而言易于理解的语言,重要把整个推导过程疏通成功,最后在纸上手推了一遍,真是酣畅淋漓!算法实现很简单,结构跟K-均值形似,参数的推导过程不用体现在代码上,直接根据推导出来的公式计算就
转载 2023-11-18 10:11:51
138阅读
本文所涉及的内容的先修知识:1、概率统计相关知识,统计机器学习;KL散度;信息熵;2、拉格朗日乘子法;3、KMeans聚类算法、混合高斯分布模型(GMM)和隐马尔可夫(HMM)模型。首先,EM算法的E是,Expectation,指的是期望;M代表的是Max。就如这个算法的名字本身所表现的那样,EM算法分两步走,E步骤和M步骤。在正式讲EM算法之前,我们先来考虑一个GMM的例子。现在我们有一堆数据样
转载 2023-12-05 04:07:45
90阅读
近期上了付费的语音识别相关课程,算是第一次系统学习语音识别相关知识,关于GMM-HMM模型还是没有理解得很透彻,写出来捋一捋思路。 一.单音素GMM-HMM模型 图一 一段2秒的音频信号,经过【分帧-预加重-加窗-fft-mel滤波器组-DCT】,得到Fbank/MFCC特征作为输入信号,此处若以帧长为25ms,帧移为25ms为例,可以得到80帧的输入信号,这80帧特征序列就
注:本文主要参考Andrew Ng的Lecture notes 8,并结合自己的理解和扩展完成。 GMM简介 GMM(Gaussian mixture model) 混合高斯模型在机器学习、计算机视觉等领域有着广泛的应用。其典型的应用有概率密度估计、背景建模、聚类等。          图1 GMM用于聚类 图2 GMM用于概率密度
高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计。本教程中,我们自己动手一步步实现高斯混合模型。GMM以及EM的完整python代码请看这里。 高斯混合模型(Gaussian Mixture Model,GMM)是一种软聚类模型。 GMM也可以看作是K-means的推广,因为GMM不仅是考虑到了数据分布的均值,也考
垃圾回收gcpython的垃圾收回机制不想c和c++是开发者自己管理维护内存的,python的垃圾回收是系统自己处理的,所以作为普通的开发者,我们不需要关注垃圾回收部分的内容,如果想要深层次理解python请继续看下文。python垃圾回收机制 Python的GC模块主要运用了引用计数来跟踪和回收垃圾。在引用计数的基础上,还可以通过“标记-清除”解决容器对象可能产生的循环引用的问题。通过分代回收以
## 图像 GMM python 实现流程 ### 1. 简介 在进行图像处理时,我们常常需要对图像进行分割,找出其中的不同区域或目标。而高斯混合模型(Gaussian Mixture Model,简称 GMM)是一种用于图像分割的常用方法。本文将介绍如何使用 Python 实现图像 GMM。 ### 2. GMM 算法流程 下面是图像 GMM 算法的基本流程: | 步骤 | 描述 | |
原创 2023-12-10 04:06:24
200阅读
本文的主题是高斯混合模型(GMM),GMM与最大期望(EM)方法有很大的联系,而在GMM的求解过程中使用了极大似然估计法一、极大似然估计我们先来复习一下极大似然估计法是怎么进行的,来看一个的经典实例问题:设样本服从正态分布 ,则似然函数为 试估计参数 与 的值 其中 是样本,也就是说这个函数
 背景建模与前景检测算法之ViBe               ViBe是一种像素级的背景建模、前景检测算法,该算法主要不同之处是背景模型的更新策略,随机选择需要替换的像素的样本,随机选择邻域像素进行更新。在无法确定像素变化的模型时,随机的更新策略,
# 使用Python和OpenCV实现高斯混合模型(GMM) 在计算机视觉中,高斯混合模型(GMM)是一种常用的概率模型,用于对数据进行建模和聚类。在本文中,我们将介绍如何使用Python和OpenCV库实现GMM,并通过一个简单的示例来演示其用法。 ## 什么是高斯混合模型(GMM)? GMM是一种概率分布模型,它假设数据是由若干个高斯分布组成的混合体。每个高斯分布代表了数据的一个聚类中心
原创 2024-03-31 05:56:21
80阅读
# Python GMM拟合 ## 引言 在统计学中,高斯混合模型(Gaussian Mixture Model,GMM)是一种常用的概率模型,用于描述由多个高斯分布组成的数据集。GMM可以被用于数据聚类、异常检测、生成模型等多个领域。在本文中,我们将介绍如何使用Python中的scikit-learn库来拟合GMM模型,并通过一个具体的示例来说明其应用。 ## 简介 GMM模型是一个参数
原创 2024-02-01 05:56:40
240阅读
飞蛾为什么要扑火?暗梁闻语燕,夜烛见飞蛾。飞蛾绕残烛,半夜人醉起。人类很早就注意到飞蛾扑火这一奇怪的现象,并且自作主张地赋予了飞蛾扑火很多含义,引申出为了理想和追求义无反顾、不畏牺牲的精神。但是,这种引申和比喻,征求过飞蛾的意见吗?后来,生物学家又提出来昆虫趋光性这一假说来解释飞蛾扑火。不过,这个假说似乎也不成立。如果昆虫真的追逐光明,估计地球上早就没有昆虫了——它们应该齐刷刷整体移民到太阳或月亮
转载 2024-09-28 12:45:42
31阅读
1.GMM(guassian mixture model)  混合高斯模型,顾名思义,就是用多个带有权重的高斯密度函数来描述数据的分布情况。理论上来说,高斯分量越多,极值点越多,混合高斯密度函数可以逼近任意概率密度函数,刻画模型越精确,需要的训练数据也就越多。2.GMM模型初始化:  即模型参数的初始化,一般采用kmeans或者LBG算法。模型初始化值对模型后期的收敛有极大影响,特别是训练模型的数
转载 2023-07-03 17:44:14
628阅读
在 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了详细说明。本文主要针对如何用EM算法在混合高斯模型下进行聚类进行代码上的分析说明。 1. GMM模型: 每个 GMM 由 K 个 Gaussian 分布
转载 2024-01-16 17:32:13
115阅读
摘要   本文通过opencv来实现一种前景检测算法——GMM,算法采用的思想来自论文[1][2][4]。在进行前景检测前,先对背景进行训练,对图像中每个背景采用一个混合高斯模型进行模拟,每个背景的混合高斯的个数可以自适应。然后在测试阶段,对新来的像素进行GMM匹配,如果该像素值能够匹配其中一个高斯,则认为是背景,否则认为是前景。由于整个过程GMM模型在不断更新学习中,所以对动态背景有一
在数据分析和机器学习领域,GMM(高斯混合模型)聚类是一种强大且灵活的无监督学习技术。它可以在处理多模态数据时提供更好的聚类效果,常用于金融分析、图像处理和自然语言处理等多个领域。本文将详细介绍如何在Python中实现GMM聚类的过程。 ### 背景描述 随着数据科学的快速发展,越来越多的企业开始重视数据分析。2015年,GMM聚类作为一种有效的概率模型,在数据分析领域逐渐崭露头角。此后,无论
原创 6月前
30阅读
在数据科学中,GMM(Gaussian Mixture Model)是一种强大的聚类算法。本文将详细介绍如何使用 Python 实现 GMM 聚类,包括必要的环境准备、分步指南、配置详解、验证测试、排错指南和扩展应用。 ### 环境准备 在开始之前,我们需要确保环境中安装了必要的软件包。请确保你的机器上安装了 Python 和相关的库,如 `scikit-learn` 和 `matplotli
原创 6月前
47阅读
既然问到了,那我就在这里分享4个图像方面的入门干货总结吧,让刚接触图像的同学少走一些弯路,欢迎大家补充!!!1.需要什么基础扎实的基础和对于图像处理理论的完整的、系统的整体认识对于后续的深入研究和实践应用具有非常非常重要的意义。好的,以上都是客套话(但是是你以后要提升自己的重要途经),想来你已经听得耳朵生茧了。接下来我真真讲讲入门图像处理的方法和经验吧数学基础:数学基础?接触图像处理真的需要你重新
这个博客就是把最具有代表性的资料记录下来,前提,我假设你知道啥是MFCC,啥是VAD,啥是CMVN了.说话人识别学习路径无非就是 GMM-UBM -> JFA -> Ivector-PLDA -> DNN embeddings -> E2E 首先 GMM-UBM, 最经典代表作: Speaker Verification Using Adapted Gaussia
  • 1
  • 2
  • 3
  • 4
  • 5