OpenCV-Python官方文档关于图像傅里叶变换和反变换的教程网址:https://docs.opencv.org/4.1.0/de/dbc/tutorial_py_fourier_transform.html 目标 我们将要学习: • 使用 OpenCV 对图像进行傅里叶变换(DFT):cv2.dft(),cv2.idft() • 使用 Numpy 中 FFT(快速傅里叶变换)函数
转载
2023-11-30 17:08:50
24阅读
一、傅里叶描述子 傅里叶描述子的作用是用来描述图像的轮廓信息,具有平移、旋转、尺度不变性特征。 对于一幅图像,通过傅里叶描述子获得其图像轮廓信息,其本质就是空间、频域变换问题。通过将图像中的像素点进行傅里叶变换,得到得到图像的轮廓信息, 对于曲线上一点,可以用复数表示: 对s(t)进行傅里叶变换可得: 其中,a(k)为傅里叶描述子,为了使其具有平移,缩放,和旋转不变性需要对其进行归一化,归一化后的
参考的一些文章以及论文我都会给大家分享出来 —— 链接就贴在原文,论文我上传到资源中去,大家可以免费下载学习,如果当天资源区找不到论文,那就等等,可能正在审核,审核完后就可以下载了。大家一起学习,一起进步!加油!! 目录前言(1)基本概念(2)读取图像信息1. 傅里叶变换(1)基本概念(2)numpy实现(3)OpevCV实现 2. 傅里叶逆变换(1)基
转载
2023-11-29 15:30:50
90阅读
使用C++、opencv获取轮廓的傅里叶描述子傅里叶描述子是一种图像特征,具体来说,是一个用来描述轮廓的特征参数。其基本思想是用物体边界信息的傅里叶变换作为形状特征,将轮廓特征从空间域变换到频域内,,提取频域信息作为图像的特征向量。即用一个向量代表一个轮廓,将轮廓数字化,从而能更好地区分不同的轮廓,进而达到识别物体的目的。关于傅里叶描述子的概述可参考论文(http://www.doc88.com/
转载
2024-01-06 08:24:44
394阅读
# 傅里叶描述子及其在图像识别中的应用
## 导语
在图像识别领域,傅里叶描述子(Fourier Descriptor)是一种经典的特征提取方法。它通过将图像的轮廓在频域上进行分解和重构,来描述图像的形状特征。本文将介绍傅里叶描述子的原理、应用以及使用Python实现的示例。
## 傅里叶描述子的原理
傅里叶描述子的核心思想是将图像的边界曲线表示为一组傅里叶级数,其中每个级数代表了不同频率的振
原创
2023-11-09 13:59:49
705阅读
1.理解二维傅里叶变换的定义
1.1二维傅里叶变换
1.2二维离散傅里叶变换
1.3用FFT计算二维离散傅里叶变换
1.3图像傅里叶变换的物理意义
2.二维傅里叶变换有哪些性质?
2.1二维离散傅里叶变换的性质
2.2二维离散傅里叶变换图像性质
3.任给一幅图像,对其进行二维傅里叶变换和逆变换
4.附录
转载
2023-10-30 14:56:20
181阅读
傅里叶变换主要分为连续和离散两大块。对连续时间信号的分析,从周期信号的傅里叶级数(FS)展开到统一的傅里叶变换(FT),是一套完整地体系。离散时间信号的傅里叶分析和连续时间信号的分析非常像,但确实是不同,没法统一地表示,主要区别在“求和”和“积分”上。FS,FT,DFS,DTFT,DFT构成了整个傅里叶分析的体系。 不管是哪种变换,都满足“周期-离散”,“非周期-连续”的对应关系。这个关系
# Python傅里叶变换实现
## 概述
在本文中,我将向你介绍如何使用Python实现傅里叶变换。傅里叶变换是一种将时域信号转换为频域信号的方法,通过它可以将信号分解为一系列正弦和余弦函数。傅里叶变换在信号处理、图像处理等领域具有重要的应用。
## 傅里叶变换的流程
下面是实现傅里叶变换的步骤:
| 步骤 | 描述 |
| --- | --- |
| 1 | 导入所需的库 |
| 2 |
原创
2023-10-13 09:22:06
244阅读
傅氏级数即傅里叶级数。法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称为傅里叶级数(法语:série de Fourier,或译为傅里叶级数)。傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用。中文名傅氏级数外文名série de Fourier全
转载
2024-03-13 18:05:31
318阅读
图像滤波分为空间域滤波和频域滤波,空间滤波的内容见本人的另一篇文章:
清逸:MATLAB中的图像变换之线性空间滤波zhuanlan.zhihu.com
本文主要讲述如何在MATLAB中实现频域滤波,那么,怎么实现呢,我们这里讲的所有的滤波都是通过傅里叶变换在频域中实现的,所有这部分和傅里叶变换渊源很深,至于傅里叶变换本身,我自己也不能解释的很清楚,我们只讲他如何在matlab
转载
2024-09-02 18:55:04
18阅读
目录【实验目的】【实验设备】【实验内容】1.某系统的频响函数编辑,试画出其对数幅频特性与相频特性。编辑 2.试画出频响函数编辑 的对数幅频特性。3.已知信号为编辑,用MATLAB编程实现该信号经冲激脉冲,抽样得到的抽样信号fs(t)及其频谱。令参数E=5,τ=0.5,采用抽样间隔 4.对题3获得的抽样信号,采用截止频率为4pi的低通滤波器对其滤波后重建信号f(t),并
转载
2024-07-29 17:38:11
0阅读
# Python中的傅里叶变换与傅里叶反变换
## 1. 简介
傅里叶变换是一种信号处理技术,可以将一个信号从时域转换到频域,而傅里叶反变换则可以将频域信号转换回时域信号。在Python中,我们可以使用`numpy`库来实现这两种变换。在本文中,我将教你如何在Python中实现傅里叶变换和傅里叶反变换。
## 2. 流程
首先,让我们看一下实现傅里叶变换和傅里叶反变换的整个流程:
```me
原创
2024-06-29 06:37:48
78阅读
# Python傅里叶变换简介与代码示例
傅里叶变换是信号处理和分析中一种重要的数学工具,它能够将函数从时间域转换到频率域。这种变换在科学与工程中广泛应用,例如在图像处理、音频分析和数据压缩等领域。本文将介绍傅里叶变换的基本概念及其在Python中的应用,并提供相关的代码示例。
## 傅里叶变换的基本概念
傅里叶变换的核心思想是任何一个周期性信号都可以表示为一组正弦波或者余弦波的叠加。通过傅
原创
2024-08-29 07:20:19
42阅读
目录 1 概念解释1.1 正弦波1.2 时域1.3 频域1.4 时域转频域2 傅里叶级数(Fourier Series)2.1 频谱2.2 傅里叶级数(Fourier Series)的相位谱3 傅里叶变换(Fourier Transformation)4 傅里叶分析的四种形式5 傅里叶系列公式推导5.1 傅里叶级数的推导 (FS
转载
2024-05-28 09:53:46
75阅读
傅里叶变换是信号的一种描述方式,通过增加频域的视角,将时域复杂波形表示为简单的频率函数,获得时域不易发现的与信号有关的其他特征。 根据时间域信号x自变量的不同,可以将信号分为连续信号x(t)和离散序列x[n],根据信号周期性不同,又可以将信号分为周期性和非周期性的,所以待分析的信号类型有四种形
转载
2023-06-26 18:38:01
187阅读
说明:本文适合信号处理方面有一定的基础的人阅读,能够理解什么时候傅里叶级数和傅里叶变换,能够理解他们的核心思想以及基本原理,能够理解到底什么是“频率域”,能够从频率的角度分析信号。一、一些关键概念的引入1、离散傅里叶变换(DFT)离散傅里叶变换(discrete Fourier transform) 傅里叶分析方法是信号分析的最基本方法,傅里叶变换是傅里叶分析的核心,通过它把信号从时间域变换到频率
转载
2023-08-21 15:15:50
116阅读
关键词:复数,欧拉公式,正弦波,复数正弦波概述傅里叶变换在科学计算、图像处理、信号等方面有着广泛的应用,也是作为一个进阶的程序员所必须要了解的。傅里叶变换听起来非常复杂,但实际上在计算机上实现和理解都非常简单。我整理出几篇笔记,以Python实现为主,不考虑太多数学公式,方便自己,也方便大家自学。注:早期的科学科学计算大多数都是MATLAB实现的,所以国内外很多课程代码都是MATLAB实现的。本着
转载
2024-04-19 13:19:19
48阅读
文章目录前言一、使用到的python库二、全部示例代码及解释1.代码2.部分函数的解释 前言 相比于MATLAB自带的FFT函数以及详尽的官方文档来说,python在傅里叶变换这个方面相比就不是那么简单了,处处需要使用Help查看相关函数的定义。但是本质来说,都是傅里叶变换,只是编程语言不同而已。一、使用到的python库import numpy as np
from scipy.fftpack
转载
2023-10-20 20:10:19
112阅读
目标本文简述傅里叶级数(Fourier Series),并使用Python实现简单的傅里叶级数的展开。由于本人对数学不是很了解,纯粹从工科的角度出发,会用即可。有叙述不当之处请各位包涵与指正,非常感谢。意义傅里叶变换在各个领域都有很广泛的应用,一篇有趣的文章《统治世界的十大算法》中排第二名,李永乐老师的视频对傅里叶变换的评级其为掌握世界本质大门的钥匙,可见其应用的广泛程度与重要性。 如傅里叶变换在
转载
2023-08-21 19:41:08
276阅读
只要用足够多的圆,就能绘制任意的封闭曲线。绘图之前首先要了解傅里叶级数,何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称傅里叶级数为一种特殊的三角级数,根据欧拉公式,三角函数又能化成指数形式,也称傅立叶级数为一种指数级数。(关于傅里叶级数的更多内容可自行百度) 然后进入正题。整个绘制的原理大致是需要用AI绘图工具,将整
转载
2023-11-22 23:03:34
21阅读