似然“似然”是对likelihood 的一种较为贴近文言文的翻译.“似然”用现代的中文来说即“可能性”。 似然函数设总体X服从分布P(x;θ)(当X是连            
                
                    
                        
                                                            
                                                                        
                                                                                        原创
                                                                                    
                            2023-11-07 14:03:54
                            
                                222阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            以前上学的时候对似然函数什么的一看到就头疼,最近专门研究了一下,写一下自己的总计,后序会是与似然函数先骨干的GMM和HMM的总结。经典理解:  设总体的概率模型为F(x|θ)。为了说明的方便,暂假定只有一个未知参数,X1,X2,……,Xn是容量为 n 的随机样本(大写X),实际观测到的样本观测值(小写x)为 Xl=x1,X2=x2,……,Xn=xn 。把同各Xi对应的密度函数或概率函数            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-05-13 16:10:09
                            
                                48阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            ”这种事件,我们可以问硬币落地时十次都是正面向上的“概率”是多少;而对            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-08-11 15:47:21
                            
                                550阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            面向统计模型参数统计学中,似然函数是一种关于统计模型参数的函数。给定输出x时,关于参数θ的似然函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率:L(θ|x)=P(X=x|θ)。似然函数在推断统计学(Statistical inference)中扮演重要角色,尤其是在参数估计方法中。在教科书中,似然常常被用作“概率”的同义词。但是在统计学中,二者有截然不同的用法。概率描述了已知参数时的随机变            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-01-01 16:52:58
                            
                                83阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            对数似然函数值/最大近然估计/log likelihood  在参数估计中有一类方法叫做“最大似然估计”,因为涉及到的估计函数往往是是指数型族,取对数后不影响它的单调性但会让计算过程变得简单,所以就采用了似然函数的对数,称“对数似然函数”。   根据涉及的模型不同,对数函数会不尽相同,但是原理是一样的,都是从因变量的密度函数的到来,并涉及到对随机干扰项分布的假设。最大似然估计法的基本思想  极大似            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-12-02 22:29:01
                            
                                204阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            4.1 极大似然估计定义  所谓极大似然法( maximum likelihood method )是指选择使事件发生概率最大的可能情况的参数估计方法。极大似然法包括2个步骤:   1)建立包括有该参数估计量的似然函数( likelihood function )   2)根据实验数据求出似然函数达极值时的参数估计量或估计值对于离散型随机            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-11-25 13:25:41
                            
                                352阅读
                            
                                                        
                                点赞
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            020.ht            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2017-05-01 16:44:00
                            
                                1810阅读
                            
                                                                                    
                                2评论
                            
                                                 
                 
                
                             
         
            
            
            
            在处理统计建模和机器学习任务时,似然函数是一个重要的概念。它用于评估给定参数下模型数据的可能性。在这篇博文中,我将详细记录如何在 Python 中求似然函数,并涵盖环境准备、集成步骤、配置详解、实战应用、排错指南及生态扩展。
### 环境准备
在开始之前,需要设置一个合适的开发环境。我们将使用 Python 以及相关的科学计算库。以下是版本兼容性矩阵:
| 软件          | 最低版            
                
         
            
            
            
            在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性”和“或然性”或“概率”又有明确的区分。概率 用于在已知一些参数的情况下,预测接下来的观测所得到的结果,而似然性 则是用于在已知某些观测所得            
                
         
            
            
            
            在统计学和机器学习领域,极大似然函数(Maximum Likelihood Function)是一种常见的估计参数的方法。它以观测数据为基础,通过最大化似然函数来寻找最优参数。在实际应用中,我们可能会遇到一些挑战,比如参数估计不准确、算法收敛速度慢等问题。本文将从问题背景、错误现象、根因分析、解决方案、验证测试及预防优化等方面详细阐述在Python中实现极大似然函数的过程以及解决方案。
## 问            
                
         
            
            
            
              极大似然估计法常常出现在机器学习算法的推导过程中,其使用场景或者说功能正是: 以已有样本、已有公式去估计参数,最大可能的那个参数。  这样来理解,极大似然估计法其实和机器学习算法的目标都是一样的。那么极大似然估计法如何来用呢?    (1)、写出已有公式: L(θ)。    (2)、对L(θ)取对数: ln L(θ            
                
         
            
            
            
            参数估计(Parameter Estimation)。常用的估计方法有 最大似然估计、最大后验估计、贝叶斯估计等。x=(x1,…,xn)是来自概率密度函数p(x|θ)的独立采样,则其乘积 p(x|θ)=∏i=1np(xi|θ) θ给定时,p(x|θ)是样本x的联合密度函数;当样本x的观察值给定时,p(x|θ)是未知参数θ的函数,称为样本的似然函数,常记作L(θ)。对数似然函数 ℓ(θ)=lnL(            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-10-23 11:31:27
                            
                                259阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            1.常见的聚类算法1):划分法:k-means2):基于密度的方法:2.EM 算法EM算法是在概率模型中寻找参数的最大似然估计或者最大后验概率的算法,其中概率模型依赖于无法观测的隐藏变量。EM算法经常用在机器学习和计算机视觉的数据聚类领域。算法步骤:E步:计算期望,利用对隐藏变量的现有估计值,计算其最大似然估计M步:最大化在E步上求得的最大似然值来计算参数的值  3.最大似然函            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-07-24 14:11:43
                            
                                29阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            目录似然和概率极大似然估计极大似然估计解决的问题极大似然估计的解决方案具体例子 似然和概率似然和概率都可以理解为“可能性”,但是它们针对的对象不一样,似然函数是关于Θ的函数,概率密度函数是关于x的函数。比如似然函数定义为:L(Θ|x),而概率密度函数定义为f(x|Θ)。假设X的概率密度函数可以定义为: 其中X是离散的随机向量X(x1,x2,…),表示参数Θ下随机向量X取到x的可能性。 假设: 那            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-09-27 15:02:25
                            
                                362阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性”和“或然性”或“概率”又有明确的区分。概率用于在已知一些参数的情况下,预测接下来的观测所得到的结果,而似然性则是用于在已知某些观测所得到的结果时,对            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-02-21 22:02:11
                            
                                0阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            似然函数(Likelihood function、Likelihood)   在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性”和“或然性”或“概率”又有明确的区分。概率用于在已知一些参数            
                
         
            
            
            
            最大似然估计 概率 定义 某个事件发生的可能性,通常知道分布规律以及具体参数的情况下,就可以计算出某个事件发生的概率 似然 定义 给定已知数据来拟合模型,或者说给定某一结果,求某一参数值的可能性 似然函数与概率密度函数 设总体分布 \(f(X;\theta)\),\(x1, ...,x_n\) 是从 ...            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2021-11-01 16:36:00
                            
                                357阅读
                            
                                                                                    
                                2评论
                            
                                                 
                 
                
                             
         
            
            
            
            1.似然函数    统计学中,似然函数是一种关于统计模型参数的函数。给定输出x时,关于参数θ的似然函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率:L(θ|x)=P(X=x|θ)    似然函数在推断统计学(Statistical inference)中扮演重要角色,尤其是在参数估计方法中。在教科书中,似然常常被用作“概率”的同义词。但是在统计学中,            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-01-30 06:01:37
                            
                                0阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            最近看斯坦福大学的机器学习课程,空下来总结一下参数估计相关的算法知识。一、极大似然估计:大学概率论课程都有讲到参数估计的两种基本方法:极大似然估计、矩估计。两种方法都是利用样本信息尽量准确的去描述总体信息,或者说给定模型(参数全部或者部分未知)和数据集(样本),让我们去估计模型的未知参数。其中,矩估计依赖于辛钦大数定律:简单随机样本的原点矩依概率收敛到相应的总体原点矩,这就启发我们利用样本矩替换总            
                
         
            
            
            
            对数似然函数在统计学和机器学习中占据了重要的位置,能够帮助我们评估模型对观察数据的拟合优度。在 Python 中实现对数似然函数并不复杂,但涉及的数学原理和计算细节却很有深度。接下来,我们将系统地探讨这一主题,包括背景描述、技术原理、架构解析、源码分析、性能优化以及总结与展望。
在机器学习中,对数似然函数被广泛用于模型选择和参数估计,而其核心在于如何最大化给定数据下的似然性。具体内容包括以下几个