1.似然函数 统计学中,似然函数是一种关于统计模型参数的函数。给定输出x时,关于参数θ的似然函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率:L(θ|x)=P(X=x|θ) 似然函数在推断统计学(Statistical inference)中扮演重要角色,尤其是在参数估计方法中。在教科书中,似然常常被用作“概率”的同义词。但是在统计学中,
转载
2024-01-30 06:01:37
0阅读
似然“似然”是对likelihood 的一种较为贴近文言文的翻译.“似然”用现代的中文来说即“可能性”。 似然函数设总体X服从分布P(x;θ)(当X是连
原创
2023-11-07 14:03:54
220阅读
参数估计(Parameter Estimation)。常用的估计方法有 最大似然估计、最大后验估计、贝叶斯估计等。x=(x1,…,xn)是来自概率密度函数p(x|θ)的独立采样,则其乘积 p(x|θ)=∏i=1np(xi|θ) θ给定时,p(x|θ)是样本x的联合密度函数;当样本x的观察值给定时,p(x|θ)是未知参数θ的函数,称为样本的似然函数,常记作L(θ)。对数似然函数 ℓ(θ)=lnL(
转载
2023-10-23 11:31:27
259阅读
目录极大似然估计最大似然原理极大似然估计似然函数极大似然函数估计值求解极大似然函数未知参数只有一个位置参数有多个总结极大似然估计最大似然原理极大似然估计 极大似然估计是建立在最大似然原理的基础上的一个统计方法。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即“模型已定,参数未知”。通过观察若干次实验的结果,利用实验结果得到某个参数值能够使样本出现的概率最大,则称为极大似然估计。 简而
Table of Contents一、思想理解二、求解过程三、总结一、思想理解极大似然估计法(the Principle of Maximum Likelihood )由高斯和费希尔(R.A.Figher)先后提出,是被使用最广泛的一种参数估计方法,该方法建立的依据是直观的最大似然原理。总结起来,最大似然估计的目的就是:利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。原理:极大似
转载
2023-10-09 00:15:42
287阅读
概念1 概率和统计:概率是已知模型和参数,推数据。统计是已知数据,推模型和参数; 2 极大似然估计(Maximum likelihood estimation,简称MLE):俗理解来说,就是利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值,换句话说,极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”; 3 极大似然估计的前提假设:所
转载
2023-09-27 21:13:03
277阅读
极大似然估计(Maximum Likelihood Estimate)一、背景知识二、从概率模型理解极大似然估计三、极大似然估计的理论原理四、应用场景 一、背景知识1822年首先由德国数学家高斯(C. F. Gauss)在处理正态分布时首次提出;1921年,英国统计学家罗纳德·费希尔(R. A. Fisher)证明其相关性质,得到广泛应用,数学史将其归功于费希尔。研究问题本质背后的深刻原因在于,
转载
2023-10-24 00:13:19
114阅读
”这种事件,我们可以问硬币落地时十次都是正面向上的“概率”是多少;而对
转载
2023-08-11 15:47:21
550阅读
极大似然估计方法(Maximum Likelihood Estimate,MLE)也称为最大概似估计或最大似然估计,其作用是通过采样的样本分布去估计整个数据中的某些参数。简单点说,现在已知一个数据的概率分布,这个概率分布中有一些参数是未知的,那么我们如何通过采样的几个样本来估计这些参数呢,这个时候就要使用极大似然估计。其实极大似然估计很多时候和我们的直觉是一样的,比如有一个系统会随机输出1-6的数
转载
2024-05-07 19:03:53
42阅读
目录一、原理二、程序代码三、运行结果附录:名词解释一、原理极大似然参数估计法需要构造一个以观测数据和未知参数为自变量的似然函数,使这个函数达到极大参数值,就是模型的参数估计值。通常噪声的概率密度函数作为似然函数,所以极大似然函数法需要已知噪声的分布。在最简单的情况下,可假定噪声具有正态分布。优点:具有良好的渐进性质缺点:计算量大考虑控制系统模型简化为CARMA模型:则递推极大似然参数估计算法公式为
转载
2023-11-06 23:04:49
785阅读
一、极大似然估计概述 极大似然估计是频率学派的进行参数估计的法宝,基于以下两种假设前提: ①某一事件发生是因为该事件发生概率最大。 ②事件发生与模型参数θ有关,模型参数θ是一个定值。 极大似然估计是通过已知样本
转载
2023-11-16 15:53:24
156阅读
维基百科:在统计学中,最大似然估计(英语:Maximum Likelihood Estimation,简作MLE),也称极大似然估计,是用来估计一个概率模型的参数的一种方法极大似然估计,通俗理解来说,就是利用已知的样本结果信息,反推最具有可能(最大概率)导致这些样本结果出现的模型参数值!换句话说,极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”
转载
2023-12-19 19:33:08
60阅读
# Python 极大似然估计(Maximum Likelihood Estimation)
## 引言
极大似然估计(Maximum Likelihood Estimation,简称 MLE)是一种统计方法,用于在给定观测数据的情况下估计模型参数。MLE 通过找到使观测数据出现的概率最大的参数值组合来工作。广泛应用于机器学习、统计推断和数据分析等领域。
本文将介绍极大似然估计的基本概念、数
极大似然估计(Maximum Likelihood Estimation,MLE)和贝叶斯估计(Bayesian Estimation)是统计推断中两种最常用的参数估计方法,二者在机器学习中的应用也十分广泛。本文将对这两种估计方法做一个详解。考虑这样一个问题:总体
的概率密度函数为
,观测到一组样本
,需要估计参数
。下面我们将采
转载
2024-01-16 14:23:40
41阅读
极大似然估计(maximum likelihood estimation,mle)方法最初由德国数学家高斯提出,但这个方法通常被归功于英国统计学家罗纳德·菲舍尔。他在1992年的论文On the mathematical foundations of theoretical statistics, reprinted in Contributions to Mathematical Statist
转载
2023-11-02 00:18:13
115阅读
。一、简介最大似然估计法 是费希尔(Fisher, R. ...
原创
2021-06-30 15:00:41
1459阅读
极大似然估计 标签(空格分隔): 数学 最大似然估计(maximun likelihood estimate)是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。这个方法最早是遗传学家以及统计学家哦罗纳德·费雪爵士在1912至1922年间开始使用的。 似然是对likelihood的一种较为贴 ...
转载
2021-07-29 20:13:00
338阅读
欢迎点击「算法与编程之美」↑关注我们!本文首发于:"算法与编程之美",欢迎关注,及时了解更多此系列文章。
原创
2022-03-02 11:46:13
421阅读
贝叶斯决策我们都知道经典的贝叶斯公式:p(w∣x)=p(x∣w)p(w)p(x)p(w|x)=\
原创
2022-12-04 07:45:00
651阅读
一文读懂最大似然估计(附R代码) R语言中的最大似然估计 最大似然估计(Maximum likelihood estimation)(通过例子理解) https://blog.csdn.net/qq_39355550/article/details/81809467
原创
2022-06-01 11:04:21
314阅读