以前上学的时候对似然函数什么的一看到就头疼,最近专门研究了一下,写一下自己的总计,后序会是与似然函数先骨干的GMM和HMM的总结。经典理解: 设总体的概率模型为F(x|θ)。为了说明的方便,暂假定只有一个未知参数,X1,X2,……,Xn是容量为 n 的随机样本(大写X),实际观测到的样本观测值(小写x)为 Xl=x1,X2=x2,……,Xn=xn 。把同各Xi对应的密度函数或概率函数
转载
2024-05-13 16:10:09
48阅读
面向统计模型参数统计学中,似然函数是一种关于统计模型参数的函数。给定输出x时,关于参数θ的似然函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率:L(θ|x)=P(X=x|θ)。似然函数在推断统计学(Statistical inference)中扮演重要角色,尤其是在参数估计方法中。在教科书中,似然常常被用作“概率”的同义词。但是在统计学中,二者有截然不同的用法。概率描述了已知参数时的随机变
转载
2024-01-01 16:52:58
83阅读
似然“似然”是对likelihood 的一种较为贴近文言文的翻译.“似然”用现代的中文来说即“可能性”。 似然函数设总体X服从分布P(x;θ)(当X是连
原创
2023-11-07 14:03:54
222阅读
似然函数(Likelihood function、Likelihood) 在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性”和“或然性”或“概率”又有明确的区分。概率用于在已知一些参数
目录似然和概率极大似然估计极大似然估计解决的问题极大似然估计的解决方案具体例子 似然和概率似然和概率都可以理解为“可能性”,但是它们针对的对象不一样,似然函数是关于Θ的函数,概率密度函数是关于x的函数。比如似然函数定义为:L(Θ|x),而概率密度函数定义为f(x|Θ)。假设X的概率密度函数可以定义为: 其中X是离散的随机向量X(x1,x2,…),表示参数Θ下随机向量X取到x的可能性。 假设: 那
转载
2023-09-27 15:02:25
362阅读
极大似然估计已知样本满足某种概率分布,但是其中具体的参数不清楚,极大似然估计估计就是把待估参数看做是确定性的量,只是其取值未知。最佳估计就是使得产生当前样本的概率最大下的参数值。 贝叶斯估计已知样本满足某种概率分布,但参数未知。贝叶斯估计把待估参数看成符合某种先验概率分布的随机变量。对样本进行观测的过程就是把先验概率密度转化为后验概率密度,这样就利用样本信息修正了对参数的初始估计值。&n
转载
2024-02-15 14:46:08
0阅读
”这种事件,我们可以问硬币落地时十次都是正面向上的“概率”是多少;而对
转载
2023-08-11 15:47:21
550阅读
1.似然函数 统计学中,似然函数是一种关于统计模型参数的函数。给定输出x时,关于参数θ的似然函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率:L(θ|x)=P(X=x|θ) 似然函数在推断统计学(Statistical inference)中扮演重要角色,尤其是在参数估计方法中。在教科书中,似然常常被用作“概率”的同义词。但是在统计学中,
转载
2024-01-30 06:01:37
0阅读
最近要更新一批基础概念,也是一种巩固复习。
参考 似然函数 Likelihood function理论在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“似然性” 与 “或然性” 或 “概率” 意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性” 和 “或然性” 或 “概率” 又
转载
2023-10-22 11:26:14
91阅读
对数似然函数值/最大近然估计/log likelihood 在参数估计中有一类方法叫做“最大似然估计”,因为涉及到的估计函数往往是是指数型族,取对数后不影响它的单调性但会让计算过程变得简单,所以就采用了似然函数的对数,称“对数似然函数”。 根据涉及的模型不同,对数函数会不尽相同,但是原理是一样的,都是从因变量的密度函数的到来,并涉及到对随机干扰项分布的假设。最大似然估计法的基本思想 极大似
转载
2023-12-02 22:29:01
204阅读
4.1 极大似然估计定义 所谓极大似然法( maximum likelihood method )是指选择使事件发生概率最大的可能情况的参数估计方法。极大似然法包括2个步骤: 1)建立包括有该参数估计量的似然函数( likelihood function ) 2)根据实验数据求出似然函数达极值时的参数估计量或估计值对于离散型随机
转载
2023-11-25 13:25:41
352阅读
点赞
# 项目方案:在Python中计算似然函数
## 一、项目背景
在统计学和机器学习中,似然函数是评估模型参数的关键工具。似然函数评估的是在给定模型参数条件下,观察到的数据出现的可能性。本项目旨在通过Python计算似然函数,并应用于简单的统计模型上,帮助团队理解其在实际问题中的应用。
## 二、项目目标
1. 理解似然函数的定义及其在统计建模中的作用。
2. 学习如何用Python实现似然
# 对数似然估计函数在R语言中的应用
## 引言
对数似然估计函数(Log-Likelihood Function)在统计学和数据分析中扮演着重要角色。它不仅用于模型的参数估计,还广泛应用于机器学习和经济学等领域。本文将探讨如何在R语言中实现对数似然估计,并通过一个实际问题进行演示。除此之外,文章还会展示一个甘特图和一个旅行图,以帮助更好地理解整个过程。
## 实际问题背景
假设我们在一家
020.ht
转载
2017-05-01 16:44:00
1810阅读
2评论
在处理统计建模和机器学习任务时,似然函数是一个重要的概念。它用于评估给定参数下模型数据的可能性。在这篇博文中,我将详细记录如何在 Python 中求似然函数,并涵盖环境准备、集成步骤、配置详解、实战应用、排错指南及生态扩展。
### 环境准备
在开始之前,需要设置一个合适的开发环境。我们将使用 Python 以及相关的科学计算库。以下是版本兼容性矩阵:
| 软件 | 最低版
似然函数似然函数是给定联合样本值x下关于未知参数θ的函数: 等式右边表明在给定θ时,x出现的可能性大小。 类似于当x∈X时 如果X时离散的随机变量 ,即代表了在参数θ下随机向量X取到x的可能性,也可以称为概率质量函数。 当X为连续随机变量时,那么f(x|θ)为给定θ下x的概率密度函数。等式左边表明在给定样本x时,对于不同的θ,那个θ可以使x出现的可能性最大。 (这里的参数θ可以参照后面极大
转载
2024-01-05 21:44:45
67阅读
在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性”和“或然性”或“概率”又有明确的区分。概率 用于在已知一些参数的情况下,预测接下来的观测所得到的结果,而似然性 则是用于在已知某些观测所得
在统计学和机器学习领域,极大似然函数(Maximum Likelihood Function)是一种常见的估计参数的方法。它以观测数据为基础,通过最大化似然函数来寻找最优参数。在实际应用中,我们可能会遇到一些挑战,比如参数估计不准确、算法收敛速度慢等问题。本文将从问题背景、错误现象、根因分析、解决方案、验证测试及预防优化等方面详细阐述在Python中实现极大似然函数的过程以及解决方案。
## 问
似然函数:在已经抽到这一组样本X的条件下,估计参数θ的值,θ代表指定的分布参数。最大似然估计可看作是一个反推,通常根据已知条件推算结果,而最大似然估计是已知结果,然后寻求使该结果出现的可能性最大的条件,以此作为估计值。极大似然估计,概率论在统计学的应用,参数估计的方法之一。已知某个随机样本满足某种概率分布(即已知样本符合某种分布),但具体参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果
转载
2023-12-01 14:22:09
132阅读
在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性”和“或然性”或“概率”又有明确的区分。概率用于在已知一些参数的情况下,预测接下来的观测所得到的结果,而似然性则是用于在已知某些观测所得到的结果时,对
转载
2024-02-21 22:02:11
0阅读