在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性”和“或然性”或“概率”又有明确的区分。概率 用于在已知一些参数的情况下,预测接下来的观测所得到的结果,而似然性 则是用于在已知某些观测所得            
                
         
            
            
            
            似然“似然”是对likelihood 的一种较为贴近文言文的翻译.“似然”用现代的中文来说即“可能性”。 似然函数设总体X服从分布P(x;θ)(当X是连            
                
                    
                        
                                                            
                                                                        
                                                                                        原创
                                                                                    
                            2023-11-07 14:03:54
                            
                                222阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            目录似然和概率极大似然估计极大似然估计解决的问题极大似然估计的解决方案具体例子 似然和概率似然和概率都可以理解为“可能性”,但是它们针对的对象不一样,似然函数是关于Θ的函数,概率密度函数是关于x的函数。比如似然函数定义为:L(Θ|x),而概率密度函数定义为f(x|Θ)。假设X的概率密度函数可以定义为: 其中X是离散的随机向量X(x1,x2,…),表示参数Θ下随机向量X取到x的可能性。 假设: 那            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-09-27 15:02:25
                            
                                362阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            以前上学的时候对似然函数什么的一看到就头疼,最近专门研究了一下,写一下自己的总计,后序会是与似然函数先骨干的GMM和HMM的总结。经典理解:  设总体的概率模型为F(x|θ)。为了说明的方便,暂假定只有一个未知参数,X1,X2,……,Xn是容量为 n 的随机样本(大写X),实际观测到的样本观测值(小写x)为 Xl=x1,X2=x2,……,Xn=xn 。把同各Xi对应的密度函数或概率函数            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-05-13 16:10:09
                            
                                48阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            最近要更新一批基础概念,也是一种巩固复习。
参考  似然函数 Likelihood function理论在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“似然性” 与 “或然性” 或 “概率” 意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性” 和 “或然性” 或 “概率” 又            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-10-22 11:26:14
                            
                                91阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            # 项目方案:在Python中计算似然函数
## 一、项目背景
在统计学和机器学习中,似然函数是评估模型参数的关键工具。似然函数评估的是在给定模型参数条件下,观察到的数据出现的可能性。本项目旨在通过Python计算似然函数,并应用于简单的统计模型上,帮助团队理解其在实际问题中的应用。
## 二、项目目标
1. 理解似然函数的定义及其在统计建模中的作用。
2. 学习如何用Python实现似然            
                
         
            
            
            
            ”这种事件,我们可以问硬币落地时十次都是正面向上的“概率”是多少;而对            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-08-11 15:47:21
                            
                                550阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            面向统计模型参数统计学中,似然函数是一种关于统计模型参数的函数。给定输出x时,关于参数θ的似然函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率:L(θ|x)=P(X=x|θ)。似然函数在推断统计学(Statistical inference)中扮演重要角色,尤其是在参数估计方法中。在教科书中,似然常常被用作“概率”的同义词。但是在统计学中,二者有截然不同的用法。概率描述了已知参数时的随机变            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-01-01 16:52:58
                            
                                83阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            对数似然函数值/最大近然估计/log likelihood  在参数估计中有一类方法叫做“最大似然估计”,因为涉及到的估计函数往往是是指数型族,取对数后不影响它的单调性但会让计算过程变得简单,所以就采用了似然函数的对数,称“对数似然函数”。   根据涉及的模型不同,对数函数会不尽相同,但是原理是一样的,都是从因变量的密度函数的到来,并涉及到对随机干扰项分布的假设。最大似然估计法的基本思想  极大似            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-12-02 22:29:01
                            
                                204阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            期望对数似然和对应的估计量 我们可以通过计算KL信息来评估给定模型的合适性。 但是,KL信息在真实建模中只能在有限的几个例子中使用,因为KL信息包含了未知分布,这使得KL信息不能被直接计算。KL信息可以被分解为 此外,等式右边的第一项是一个常数,因为它仅仅依赖于真实模型,显然为了比较不同的模型,仅考虑上式的第二项即可。 这一项被称为期望对数似然(expected log-likelihood).            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-01-08 13:11:12
                            
                                62阅读
                            
                                                                             
                 
                
                             
         
            
            
            
            4.1 极大似然估计定义  所谓极大似然法( maximum likelihood method )是指选择使事件发生概率最大的可能情况的参数估计方法。极大似然法包括2个步骤:   1)建立包括有该参数估计量的似然函数( likelihood function )   2)根据实验数据求出似然函数达极值时的参数估计量或估计值对于离散型随机            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-11-25 13:25:41
                            
                                352阅读
                            
                                                        
                                点赞
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            # Java 似然函数值计算
## 引言
在统计学中,似然函数是描述观察数据与参数之间关系的重要工具。它可以用于参数估计、模型选择以及假设检验。随着计算机科学的发展,似然函数的计算在数据科学、机器学习和其他领域变得越来越重要。在这篇文章中,我们将探讨如何在Java中计算似然函数值,配合代码示例和图示化内容以帮助理解。
## 什么是似然函数?
在统计学中,似然函数是给定参数下观察到数据的概率            
                
         
            
            
            
            020.ht            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2017-05-01 16:44:00
                            
                                1810阅读
                            
                                                                                    
                                2评论
                            
                                                 
                 
                
                             
         
            
            
            
            在处理统计建模和机器学习任务时,似然函数是一个重要的概念。它用于评估给定参数下模型数据的可能性。在这篇博文中,我将详细记录如何在 Python 中求似然函数,并涵盖环境准备、集成步骤、配置详解、实战应用、排错指南及生态扩展。
### 环境准备
在开始之前,需要设置一个合适的开发环境。我们将使用 Python 以及相关的科学计算库。以下是版本兼容性矩阵:
| 软件          | 最低版            
                
         
            
            
            
            在统计学和机器学习领域,极大似然函数(Maximum Likelihood Function)是一种常见的估计参数的方法。它以观测数据为基础,通过最大化似然函数来寻找最优参数。在实际应用中,我们可能会遇到一些挑战,比如参数估计不准确、算法收敛速度慢等问题。本文将从问题背景、错误现象、根因分析、解决方案、验证测试及预防优化等方面详细阐述在Python中实现极大似然函数的过程以及解决方案。
## 问            
                
         
            
            
            
            目录极大似然估计最大似然原理极大似然估计似然函数极大似然函数估计值求解极大似然函数未知参数只有一个位置参数有多个总结极大似然估计最大似然原理极大似然估计  极大似然估计是建立在最大似然原理的基础上的一个统计方法。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即“模型已定,参数未知”。通过观察若干次实验的结果,利用实验结果得到某个参数值能够使样本出现的概率最大,则称为极大似然估计。  简而            
                
         
            
            
            
            极大似然估计(Maximum Likelihood Estimate)一、背景知识二、从概率模型理解极大似然估计三、极大似然估计的理论原理四、应用场景 一、背景知识1822年首先由德国数学家高斯(C. F. Gauss)在处理正态分布时首次提出;1921年,英国统计学家罗纳德·费希尔(R. A. Fisher)证明其相关性质,得到广泛应用,数学史将其归功于费希尔。研究问题本质背后的深刻原因在于,            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2023-10-24 00:13:19
                            
                                114阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性”和“或然性”或“概率”又有明确的区分。概率用于在已知一些参数的情况下,预测接下来的观测所得到的结果,而似然性则是用于在已知某些观测所得到的结果时,对            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-02-21 22:02:11
                            
                                0阅读
                            
                                                                             
                 
                
                                
                     
                                    
                             
         
            
            
            
            最大似然估计 概率 定义 某个事件发生的可能性,通常知道分布规律以及具体参数的情况下,就可以计算出某个事件发生的概率 似然 定义 给定已知数据来拟合模型,或者说给定某一结果,求某一参数值的可能性 似然函数与概率密度函数 设总体分布 \(f(X;\theta)\),\(x1, ...,x_n\) 是从 ...            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2021-11-01 16:36:00
                            
                                357阅读
                            
                                                                                    
                                2评论
                            
                                                 
                 
                
                             
         
            
            
            
            1.似然函数    统计学中,似然函数是一种关于统计模型参数的函数。给定输出x时,关于参数θ的似然函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率:L(θ|x)=P(X=x|θ)    似然函数在推断统计学(Statistical inference)中扮演重要角色,尤其是在参数估计方法中。在教科书中,似然常常被用作“概率”的同义词。但是在统计学中,            
                
                    
                        
                                                            
                                                                        
                                                                                        转载
                                                                                    
                            2024-01-30 06:01:37
                            
                                0阅读
                            
                                                                             
                 
                
                                
                    