最近邻插值法的优点是计算量很小,算法也简单,因此运算速度较快。但它仅使用离待测采样点最近的像素的灰度值作为该采样点的灰度值,而没考虑其他相邻像素点的影响,因而重新采样后灰度值有明显的不连续性,图像质量损失较大,会产生明显的马赛克和锯齿现象。 双线性插值法效果要好于最近邻插值,只是计算量稍大一些,算法复杂些,程序运行时间也稍长些,但缩放后图像质量高,基本克服了最近邻插值灰度值不连续的特点,因为
图像放大并进行BiCubic插值 Matlab/C++代码
BiCubic
双三次插值
BiCubic插值原理:双三次插值又称立方卷积插值。三次卷积插值是一种更加复杂的插值方式。该算法利用待采样点周围16个点的灰度值作三次插值,不仅考虑到4 个直接相邻点的灰度影响,而且考虑到各邻点间灰度值变化率的影响。三次运算可以得到更接近高分辨率图像的放大效果,但也导致了运算量的急剧增加。这种算
转载
2024-08-12 10:59:49
112阅读
三种插值方法都是使用Python自己实现的。1.1 最近邻插值寻找每个中心点周围的八个点中有无未丢失的点,如果有的话就赋值为第一个找到的点,如果没有就扩大范围再次寻找,在最大范围内都找不到的话就跳过。1.2 双线性插值使用解方程的方法求解,整体思路类似colorization作业的实现,每个点用周围的八个点线性表示,根据距离为1和确定两个权重。四个边界上的点只会由五个邻居来表示,每个权重为0.2,
转载
2024-01-16 20:15:00
151阅读
以云南省2015年6月的29个气象站点数据为例进行径向基函数(Rbf)插值。数据格式如下: 今天需要使用到cartopy库来绘图,因此需要先安装好,据说安装很烦人,可以去uci下载.whl文件来安装,安装好后先测试一下是否可以运行,如下简单测试:首先,这是一个不成功的尝试,因为没能成功加载shp图层导致最后的插值没有落在特定的地理范围内。如果有伙伴知道这个问题的解决方法,希望不吝赐教。我相信只要是
转载
2023-08-28 16:34:54
10阅读
一维插值插值不同于拟合。插值函数经过样本点,拟合函数一般基于最小二乘法尽量靠近所有样本点穿过。常见插值方法有拉格朗日插值法、分段插值法、样条插值法。拉格朗日插值多项式:当节点数n较大时,拉格朗日插值多项式的次数较高,可能出现不一致的收敛情况,而且计算复杂。随着样点增加,高次插值会带来误差的震动现象称为龙格现象。分段插值:虽然收敛,但光滑性较差。样条插值:样条插值是使用一种名为样条的特殊分段多项式
转载
2023-09-15 23:00:29
519阅读
对于从事机器学习的人,python+numpy+scipy+matplotlib是重要的基础;它们基本与matlab相同,而其中最重要的当属numpy;因此,这里列出100个关于numpy函数的问题,希望读者通过“题海”快速学好numpy;题中示例可以粘贴运行,读者可以边执行边看效果;1 如何引入numpy?
import numpy as np(或者from numpy import *)
初始化一个二维数组的方法:原因:主要是由于python中复制的时候是浅拷贝#方法一:
In [1]: arr = [[0]*5]*5
In [2]: arr
Out[2]:
[[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]]
#这时用方法arr[0][0] = 1 会导
转载
2024-09-04 09:56:31
13阅读
代理模型是一种用较少的计算资源来模拟复杂系统的方法。这些模型可以基于数据驱动的统计方法,也可以基于物理x学建模。它们的关键优势在于能够在不牺牲太多精度的情况下,迅速预测复杂系统在不同参数下的行为。
%**************************************************************
原创
2022-04-16 10:41:46
1026阅读
def show_digits():
digits=load_digits()
fig=plt.figure()
for i in range(25):
ax=fig.add_subplot(5,5,i+1)
ax.imshow(digits.images[i],cmap=plt.cm.gray_r,interpolation='biline
Python学习-Scipy库插值处理目录1、单变量插值, 一维插值interpld()2、多变量插值 网格数据二维插值 griddata()3、样条插值 InterpolatedUnivariateSpline类对象插值就是根据已知数据点(条件),来预测未知数据点值得方法。 具体来说,假如你有n个已知条件,就可以求一个n-1次的插值函数P(x),使得P(x)接近未知原函数f(x),并由插值函数预
转载
2023-06-16 17:13:55
412阅读
Python数据插值1. 数据插值2. 导入模块3. 插值函数3.1 多项式3.2 多项式插值3.3 样条插值3.4 多变量插值3.4.1 均匀网格3.4.2 不均匀网格 1. 数据插值插值是一种从离散数据点构建函数的数学方法。插值函数或者插值方法应该与给定的数据点完全一致。插值可能的应用场景:根据给定的数据集绘制平滑的曲线对计算量很大的复杂函数进行近似求值插值和前面介绍过的最小二乘拟合有些类似
转载
2023-07-05 16:46:20
1382阅读
本期推文,我们将介绍IDW(反距离加权法(Inverse Distance Weighted)) 插值的Python计算方法及插值结果的可视化绘制过程。主要涉及的知识点如下:IDW简介自定义Python代码计算空间IDW分别使用plotnine、Basemap进行IDW插值结果可视化绘制IDW简介反距离权重 (IDW) 插值假设:彼此距离较近的事物要比彼此距离较远的事物更相似。当为任何未测量的位置
转载
2023-07-03 18:53:38
425阅读
1. 什么是插值最近在做时间序列预测时,在突增或者突降的变化剧烈的情况下,拟合参数的效果不好,有用到插值的算法补全一些数据来平滑剧烈变化过程。还有在图像处理中,也经常有用到插值算法来改变图像的大小,在图像超分(Image Super-Resolution)中上采样也有插值的身影。插值(interpolation),顾名思义就是插入一些新的数据,当然这些值是根据已有数据生成。插值算法有很多经典算法,
转载
2023-07-04 17:29:25
219阅读
官方文档链接:https://docs.scipy.org/doc/scipy-1.3.0/reference/generated/scipy.interpolate.interp1d.html#scipy.interpolate.interp1dscipy库中可以通过interp1d类来实现一维插值照例还是官方文档的翻译与解释类原型:class scipy.interpolate.in
转载
2023-06-19 14:29:03
347阅读
文章目录python二维数组的插值基本原理 python二维数组的插值通过scipy.interpolate中的griddata可以进行针对坐标网格的二维插值,其调用方法为griddata(points, values, xi, method='linear', fill_value=nan, rescale=False)points, values构成了用于插值的原始数据,xi为插值的坐标格点
转载
2023-07-29 20:18:05
281阅读
1.插值scipy.interpolateSciPy的interpolate模块提供了许多对数据进行插值运算的函数,范围涵盖简单的一维插值到复杂多维插值求解。一维插值:当样本数据变化归因于一个独立的变量时;多维插值:反之样本数据归因于多个独立变量时。注:一维插值这里就不再讲述了,主要是对二维插值的一个总结。2.interp2d()from scipy.interpolate import inte
转载
2023-08-21 15:37:06
408阅读
文章目录(一)本文数据资料下载(二)简单介绍一下定义(三)介绍我们可能用到的模块和代码(重点)3.1 scipy.interpolate 模块3.1.1 一维插值函数 (interp1d)3.1.2 一维插值方法的比较3.1.2 二维插值类 (interp2d)3.1.3 多维插值 (griddate)3.2 numpy中多项式拟合函数(polyfit)3.3 scipy.optimize模块中
转载
2023-07-01 11:43:36
396阅读
Python 中常用的插值方法 Python中的插值模块是scipy.interpolate,在惯性传感器的处理中主要用到一维的插值函数interp1d。Inter1d函数包含常用的**四种插值方法:分段线性插值,临近插值,球面插值,三次多项式插值。**而Spline就对应其中的三次多项式插值。插值的步骤应该是先根据已有序列拟合出一个函数,然后再在这个序列区间中均匀采样n次,得到插值后的n个序列
转载
2023-06-30 19:30:09
288阅读
目录前言最近邻插值法(1)理论(2)python实现双线性插值(1)单线性插值(2)双线性插值(3)计算过程(4)python实现双三次插值(1)理论(2)python实现 前言参考这篇论文:《Deep Learning for Image Super-resolution:A Survey》 简单来说,插值指利用已知的点来“猜”未知的点,图像领域插值常用在修改图像尺寸的过程,由旧的图像矩阵中的
转载
2023-08-04 14:33:28
169阅读