泛化能力的强弱决定了模型的好坏,而影响泛化能力的则是模型的拟合问题
原创
2021-07-27 15:56:51
612阅读
过拟合:样本数量少于要估计的参数,容易造成过拟合,泛化能力会很差。欠拟合:样本数量多于要估计的参数,易造成欠拟合。
转载
2019-11-02 15:17:00
141阅读
2评论
过拟合就是学到了很多没必要的特征,比如长得像猫的狗,和长得像狗的猫。欠拟合就是训练样本被提取的特征比较少,无法高效的识别。
在机器学习寻找假设的过程中可能会出现过拟合和欠拟合的现象,那什么是过拟合和欠拟合呢? 我们客观上认为,给定一个假设空间H,一个假设a∈H,如果存在其他的假设α∈H,使得在训练样例上a的错误率比α的小,但在整个实例分布上α的错误率比a的小,那么就说假设a过度拟合训练数据。 一般而言,我们认为参数过多是造成过拟合的原因。其实,这只是过拟合的一种表现。有的
原创
2016-11-16 19:59:13
2172阅读
点赞
一、从机器学习分析两者的关系 机器学习的基本问题:利用模型对数据进行拟合,学习的目的并非是对有限训练集进行正确预测,而是对未曾在训练集合出现的样本能够正确预测。 模型对训练集数据的误差称为经验误差,对测试集数据的误差称为泛化误差。 模型对训练集以外样本的预测能力就称为模型的泛化能力,追求这种泛化能力 ...
转载
2021-09-01 11:10:00
581阅读
2评论
欠拟合:模型拟合不够,在训练集上表现效果差过拟合:模型过度拟合,在训练集上表现好,测试人工筛选特征
对于深度学习或机器学习模型而言,我们不仅要求它对训练数据集有很好的拟合(训练误差),同时也希望它可以对未知数据集(测试集)有很好的拟合结果(泛化能力),所产生的测试误差被称为泛化误差。度量泛化能力的好坏,最直观的表现就是模型的过拟合(overfitting)和欠拟合(underfitting)。过拟合和欠拟合是用于描述模型在训练过程中的两种状态。一般来说,训练过程会是如下所示的一个曲线图。&nbs
拟合是已知点列,从整体上靠近它们,不要求曲线经过每个样本点,但要保证误差足够小 已知一组数据,寻求一个y=f(x),使f(x)在某种准则下与所有数据点最为接近 拟合的准则是使yi与f(xi)的距离的平方和最小,称为最小二乘准则 若函数对参数线性(参数仅以一次方形式出现,且不能乘以或除以其他任何参数, ...
转载
2021-10-11 20:41:00
223阅读
2评论
拟合:形象的说,拟和就是把平面上一系列的点,用一条光滑的曲线连接起来.因为这条曲线有无数种可能,从而有各种拟和方法.拟和的曲线一般可以用函数表示.根据这个函数的不同有不同的拟和的名字.如果待定函数是线性,就叫线性拟合或者线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。表达式也可以是分段函数,这种情况下叫作样条拟合。 最左边是欠拟合,最右边是过拟合。所谓
转载
2020-02-13 15:02:00
94阅读
机器学习是利用模型在训练集中进行学习,在测试集中对样本进行预测。模型对训练集数据的误差称为经验误差,对测试集数据的误差称为泛化误差。模型对训练集以外样本的预测能力称为模型的泛化能力。 欠拟合(underfitting)和过拟合(overfitting)是模型泛化能力不高的两种常见原因,都是模型学习能力与数据复杂度不匹配的情况。 欠拟合常常在模型学习能力比较弱,而数据复杂度较高的场景出现,由
def LINEARFITTING_H#define LINEARFITTING_H#include <QWidget>#include <list>#include "fitting.h"#include <QPaintEvent>#i...
原创
2022-08-16 16:33:33
451阅读
文章目录定义两个影响因素常用的解决办法权重衰减丢弃法 定义欠拟合(underfitting):模型无法得到较低的训练误差(训练误差和泛化误差都很高) 过拟合(overfitting):模型的训练误差远小于其在测试数据集上的误差,即泛化误差这里我们可简单理解下两种误差,训练误差可以认为是做往年高考试题(训练题)时的错误率,泛化误差则可以通过真正参加高考(测试题)时的答题错误率。两个影响因素有诸多因
直线的拟合是几何基元的拟合基础部分。平常我们表示平面上一条直线用y=ux+v此时,u-v平面上每个点(u,v)都可以唯一对应一条x-y平面上的一条直线。对于直线y=ux+v可以转换成v=y-ux,可见,这条直线上每个点都对应着u-v平面上的一条直线,这些直线会相交于(u,v)点,利用这个性质可以检测共线点。实际上,上述的变化被称为Hough变换。对于实际的应用中,由于y=ux+v并不是能表示所有的
在机器学习中,经常要用scikit-learn里面的线性回归模型来对数据进行拟合,进而找到数据的规律,从而达到预测的目的。用图像展示数据及其拟合线可以非常直观地看出拟合线与数据的匹配程度,同时也可用于后续的解释和阐述工作。 这里利用Nathan Yau所著的《鲜活的数据:数据可视化指南》一书中的数据,学习画图。 数据地址:http://datasets.flowingdata.
matlab曲面拟合 加载数据:load franke; 拟合曲面:surffit = fit([x,y],z,'poly23','normalize','on')输出:Linear model Poly23:
surffit(x,y) = p00 + p10*x + p01*y + p20*x^2 + p11*x*y + p02*y^2 + p21*x^2*y
推荐一个不错的网页,可以直接用solve函数求解方程组: 4.1 曲线拟合的最小二乘法求以下拟合函数拟合条件:拟合曲线与各数据点在y方向的误差平方和最小.拟合函数为一元函数时--函数图形为平面曲线--曲线拟合 解决曲线拟合,最先是确定拟合函数的形式。即适当选取 选幂函数{1,x,x2, ···,xn}, 则多项式拟合函数φ(x)可表示为:φ(x)=a0+a1*x+a2*x2+a
目录1. 一元多项式拟合使用方法 np.polyfit(x, y, deg)2. 任意函数拟合使用 curve_fit() 方法实例:(1)初始化 x 和 y 数据集(2)建立自定义函数(3)使用自定义的函数生成拟合函数绘图 1. 一元多项式拟合使用方法 np.polyfit(x, y, deg)polyfig 使用的是最小二乘法,用于拟合一元多项式函数。参数说明:
一、欠拟合 首先欠拟合就是模型没有很好的捕捉到数据特征,不能够很好的拟合数据,如下面的例子: 左图表示size和prize关系的数据,中间的图就是出现欠拟合的的模型,不能够很好的拟合数据,如果在中间的多项式上再加一个二项式,就可以很好的拟合数据了,如右图所示。 解决
欠拟合与过拟合概念 图3-1 欠拟合与过拟合概念演示 通常,你选择让交给学习算法处理的特征的方式对算法的工作过程有很大影响。如图3-1中左图所示,采用了y = θ0 + θ1x的假设来建立模型,我们发现较少的特征并不能很好的拟合数据,这种情况称之为欠拟合(underfitting)。而如果我们采用了
转载
2018-11-04 16:21:00
179阅读
2评论