在处理统计建模和机器学习任务时,函数是一个重要的概念。它用于评估给定参数下模型数据的可能性。在这篇博文中,我将详细记录如何在 Python 中函数,并涵盖环境准备、集成步骤、配置详解、实战应用、排错指南及生态扩展。 ### 环境准备 在开始之前,需要设置一个合适的开发环境。我们将使用 Python 以及相关的科学计算库。以下是版本兼容性矩阵: | 软件 | 最低版
原创 7月前
44阅读
1.函数    统计学中,函数是一种关于统计模型参数的函数。给定输出x时,关于参数θ的函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率:L(θ|x)=P(X=x|θ)    函数在推断统计学(Statistical inference)中扮演重要角色,尤其是在参数估计方法中。在教科书中,常常被用作“概率”的同义词。但是在统计学中,
”是对likelihood 的一种较为贴近文言文的翻译.“”用现代的中文来说即“可能性”。 函数设总体X服从分布P(x;θ)(当X是连
原创 2023-11-07 14:03:54
222阅读
面向统计模型参数统计学中,函数是一种关于统计模型参数的函数。给定输出x时,关于参数θ的函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率:L(θ|x)=P(X=x|θ)。函数在推断统计学(Statistical inference)中扮演重要角色,尤其是在参数估计方法中。在教科书中,常常被用作“概率”的同义词。但是在统计学中,二者有截然不同的用法。概率描述了已知参数时的随机变
以前上学的时候对函数什么的一看到就头疼,最近专门研究了一下,写一下自己的总计,后序会是与函数先骨干的GMM和HMM的总结。经典理解:  设总体的概率模型为F(x|θ)。为了说明的方便,暂假定只有一个未知参数,X1,X2,……,Xn是容量为 n 的随机样本(大写X),实际观测到的样本观测值(小写x)为 Xl=x1,X2=x2,……,Xn=xn 。把同各Xi对应的密度函数或概率函数
”这种事件,我们可以问硬币落地时十次都是正面向上的“概率”是多少;而对
转载 2023-08-11 15:47:21
550阅读
最近要更新一批基础概念,也是一种巩固复习。 参考 函数 Likelihood function理论在数理统计学中,函数是一种关于统计模型中的参数的函数,表示模型参数中的性。函数在统计推断中有重大作用,如在最大估计和费雪信息之中的应用等等。“性” 与 “或然性” 或 “概率” 意思相近,都是指某种事件发生的可能性,但是在统计学中,“性” 和 “或然性” 或 “概率” 又
020.ht
函数函数是给定联合样本值x下关于未知参数θ的函数: 等式右边表明在给定θ时,x出现的可能性大小。 类似于当x∈X时 如果X时离散的随机变量 ,即代表了在参数θ下随机向量X取到x的可能性,也可以称为概率质量函数。 当X为连续随机变量时,那么f(x|θ)为给定θ下x的概率密度函数。等式左边表明在给定样本x时,对于不同的θ,那个θ可以使x出现的可能性最大。 (这里的参数θ可以参照后面极大
目录和概率极大估计极大估计解决的问题极大估计的解决方案具体例子 和概率和概率都可以理解为“可能性”,但是它们针对的对象不一样,函数是关于Θ的函数,概率密度函数是关于x的函数。比如函数定义为:L(Θ|x),而概率密度函数定义为f(x|Θ)。假设X的概率密度函数可以定义为: 其中X是离散的随机向量X(x1,x2,…),表示参数Θ下随机向量X取到x的可能性。 假设: 那
本文将涉及到数理统计的最后一个模块——参数估计,后续将更新的模块是多项式计算、数据插值和曲线拟合。 在讲述使用matlab来实现参数估计之前,有必要去了解一些基本原理。 1.离散型随机变量的极大估计法: (1) 函数 若X为离散型, 函数为 (2) 函数L(θ)的最大值点 θ, 则θ就是未知参数的极大估计值. 2.连续型随机变量的极大估计法: (1) 函数 若 X 为
在数理统计学中,函数是一种关于统计模型中的参数的函数,表示模型参数中的性。函数在统计推断中有重大作用,如在最大估计和费雪信息之中的应用等等。“性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“性”和“或然性”或“概率”又有明确的区分。概率用于在已知一些参数的情况下,预测接下来的观测所得到的结果,而性则是用于在已知某些观测所得到的结果时,对
对数函数值/最大近估计/log likelihood  在参数估计中有一类方法叫做“最大估计”,因为涉及到的估计函数往往是是指数型族,取对数后不影响它的单调性但会让计算过程变得简单,所以就采用了函数的对数,称“对数函数”。   根据涉及的模型不同,对数函数会不尽相同,但是原理是一样的,都是从因变量的密度函数的到来,并涉及到对随机干扰项分布的假设。最大估计法的基本思想  极大
请问计量经济里三大检验包括比检验、wald检验、拉克朗日乘数检验的思想和方法分别是什么比检验、wald检验、拉格朗日乘数检验都基于MLE,就大样本而言三者是渐进等价的。1、比检验的思想是:如果参数约束是有效的,那么加上这样的约束不应该引起函数最大值的大幅度降低。也就是说比检验的实质是在比较有约束条件下的函数最大值与无约束条件下函数最大值。比定义为有约束条件下的
函数:在已经抽到这一组样本X的条件下,估计参数θ的值,θ代表指定的分布参数。最大估计可看作是一个反推,通常根据已知条件推算结果,而最大估计是已知结果,然后寻求使该结果出现的可能性最大的条件,以此作为估计值。极大估计,概率论在统计学的应用,参数估计的方法之一。已知某个随机样本满足某种概率分布(即已知样本符合某种分布),但具体参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果
最大估计 概率 定义 某个事件发生的可能性,通常知道分布规律以及具体参数的情况下,就可以计算出某个事件发生的概率 定义 给定已知数据来拟合模型,或者说给定某一结果,某一参数值的可能性 函数与概率密度函数 设总体分布 \(f(X;\theta)\),\(x1, ...,x_n\) 是从 ...
转载 2021-11-01 16:36:00
357阅读
2评论
4.1 极大估计定义  所谓极大法( maximum likelihood method )是指选择使事件发生概率最大的可能情况的参数估计方法。极大法包括2个步骤:   1)建立包括有该参数估计量的函数( likelihood function )   2)根据实验数据求出函数达极值时的参数估计量或估计值对于离散型随机
转载 2023-11-25 13:25:41
352阅读
1点赞
MLE 与 EM算法在参数估计里应用真是很多, PLSA就是用 EM 来求解的 ,估计这些都是概率图模型中会涉及到的,以后有机会再去系统的学习下概率图模型。Maximum Likelihood Estimate 极大估计(MLE)是给定数据集后用来求解模型参数的方法,其问题形式是这样的,给定来自随机变量 $X$ 的观测数据集合 $\left \{  x_i \right \}_{i
在 DoA 估计中,最大方法主要分为确定性最大(DML)和随机性最大(SML)。当源信号是确定性信号时,为确定性最大法;当源信号为已知分布的随机信号时,为随机性最大法。下面,我们要用确定性最大算法来估计目标的方位。信号模型假设空间中存在 个不同方向的信号,入射到由 个天线单元构成的均匀直线阵上。令第 个信号源的方向为 ,对应的信号波形为 。令第 个天线单元的噪声为
文章目录极大估计最大原理极大估计函数极大函数估计值求解极大函数未知参数只有一个位置参数有多个总结 极大估计最大原理极大估计  极大估计是建立在最大原理的基础上的一个统计方法。极大估计提供了一种给定观察数据来评估模型参数的方法,即“模型已定,参数未知”。通过观察若干次实验的结果,利用实验结果得到某个参数值能够使样本出现的概率最大,则称为极大估计。
转载 2024-04-24 11:49:31
49阅读
  • 1
  • 2
  • 3
  • 4
  • 5