# 实现Python稀疏矩阵 ## 一、整体流程 为了实现Python稀疏矩阵,我们需要按照以下步骤进行操作: ```mermaid gantt title 实现Python稀疏矩阵流程 section 确定需求 确定问题需求 :done, 2022-01-01, 1d section 数据准备 数据收集与整理
原创 2024-06-25 05:16:44
54阅读
 稀疏矩阵的定义:具有少量非零项的矩阵(在矩阵中,若数值0的元素数目远多于非0元素的数目,并且非0元素分布没有规律时,)则称该矩阵稀疏矩阵;相反,为稠密矩阵。非零元素的总数比上矩阵所有元素的总数为矩阵的稠密度。稀疏矩阵的两个动机:稀疏矩阵通常具有很大的维度,有时甚大到整个矩阵(零元素)与可用内存不想适应;另一个动机是避免零矩阵元素的运算具有更好的性能。稀疏矩阵的格式存储矩阵的一般方法是
转载 2023-06-02 23:19:14
165阅读
# Python稀疏矩阵方法选择 在数据科学和机器学习领域,处理高维稀疏数据集是一项重要且挑战性的任务。稀疏矩阵是以高维空间中零值占据主导地位的一种数据表示方式。在许多机器学习应用中,稀疏矩阵常见于文本处理(如文档-词矩阵)、推荐系统等领域。本文将介绍如何在Python中处理稀疏矩阵,并选择合适的方法进行分析。 ## 什么是稀疏矩阵稀疏矩阵是指在给定的矩阵中,大部分元素为零,只
# Python中的稀疏举证与聚类分析 在数据科学领域,聚类分析是一个常用的数据挖掘技术,用于将相似的数据点分组。稀疏举证则是一种在高维空间中有效处理数据的技术,特别是在面对海量数据时尤为重要。本篇文章将介绍如何使用Python进行稀疏举证和聚类分析,并通过代码示例进行说明。 ## 稀疏举证 稀疏举证(Sparse Representation)通过引入稀疏性约束,将复杂的高维数据表示为较低
动态可变存储Mat即矩阵(Matrix)的缩写  大数组类型中最主要的是,cv::Mat,可以看成是OpenCV库, C++ 实现的核心内容;OpenCV库的绝大多数函数,或是cv::Mat的成员,或是以cv::Mat作为参数,或是返回值是cv::Mat,或是其一或是所有; cv::Mat一般用于任意维度的稠密数组,这个稠密的意思是与数组单元相对应,都有一个数据存放在内存,哪怕这个数组单元存放的是
记得刚读研究生的时候,学习的第一个算法就是meanshift算法,所以一直记忆犹新,今天和大家分享一下Meanshift算法,如有错误,请在线交流.Mean Shift算法,一般是指一个迭代的步骤,即先算出当前点的偏移均值,移动该点到其偏移均值,然后以此为新的起始点,继续移动,直到满足一定的条件结束. 记得刚读研究生的时候,学习的第一个算法就是means
分布式算法设计1).MapReduce 在Map和Reduce两个基本算子抽象下,所谓Hadoop和Spark分布式计算框架并没有本质上的区别,仅仅是实现上的差异。阅读了不少分布式算法的实现(仅仅是实现,不涉及原理推导),大部分思路比较直观,大不了几个阶段的MapReduce就可以实现。这里主要介绍一个曾经困扰我好久且终于柳暗花明的问题,即“大规模稀疏矩阵乘法”。
在处理稀疏矩阵乘以稀疏矩阵的问题时,尤其在 Python 环境中,我们需要利用高效的存储和计算方式,以避免不必要的资源浪费。本文将详细记录解决“Python 稀疏矩阵稀疏矩阵”问题的过程,包括环境准备、集成步骤、配置详解、实战应用、性能优化和生态扩展。 ### 环境准备 确保您有合适的环境来运行 Python 代码。推荐使用 Python 3.6 及以上版本,并安装 `scipy` 和 `n
原创 5月前
33阅读
Python稀疏矩阵1. 导入模块2. SciPy中的稀疏矩阵2.1 坐标列表格式 COO2.2 格式转换2.3 压缩列格式和压缩行格式 CSR/CSC3. 创建稀疏矩阵3.1 稀疏矩阵的可视化3.2 稀疏矩阵线性代数3.3 线性方程组3.4 LU分解3.5 特征值问题 数组和矩阵是数值计算的基础元素。目前为止,我们都是使用NumPy的ndarray数据结构来表示数组,这是一种同构的容器,用于存
直接上代码:#!/usr/bin/env python # -*- coding:utf-8 -*- # 序列转为稀疏矩阵 # 输入:序列 # 输出:indices非零坐标点,values数据值,shape稀疏矩阵大小 import numpy as np def sparse_tuple_from(sequences, dtype=np.int32): indices = []
转载 2023-06-02 23:19:25
276阅读
以下是使用NumPy / SciPy进行密集和稀疏M矩阵的方法:import numpy as np import scipy.sparse as sp # Coordinates where S is True S = np.array([[0, 1], [3, 6], [3, 4], [9, 1], [4, 7]]) # Dense M matrix # Random big matrix M
默认使用csr格式的稀疏矩阵1、如果要统计稀疏矩阵全部元素的和,不要用sum(a),用np.sum(a)或则a.sum()就好。对于shape=10000*10000的矩阵而言,全部求和采用np.sum比sum高效得多:number = np.sum(sum(xtest_mask),axis=1)[0,0]   2.2秒number = np.sum(xtest_mask) &
title: 稀疏矩阵乘法 date: 2020-11-09 19:31:44 tags: 稀疏矩阵运算 categories: 数据结构 在本算法中,两个稀疏矩阵的特性都有用到 规定规定以下变量名称,本文讲述 矩阵A × 矩阵B = 矩阵C 的运算过程需要用到的存储结构有:矩阵A,矩阵 B 的原始二维数组(2个)矩阵A,矩阵B 的三元组数组(2个)存储 矩阵A,矩阵B 每行有多少个非零
代码:#include<stdio.h> #include<stdlib.h> #define MAXSIZE 1000 typedef struct{ int row;//第几行 int col;//第几列 int e;//存储的值 }Triple; typedef struct { Triple data[MAXSIZE]; int m,n,len;
简单来说,矩阵是充满数字的表格。 A和B是两个典型的矩阵,A有2行2列,是2×2矩阵;B有2行3列,是2×3矩阵;A中的元素可用小写字母加行列下标表示,如 矩阵加减法  两个矩阵相加或相减,需要满足两个矩阵的列数和行数一致。 加法交换律:A + B = B + A 矩阵乘法A和B相乘,需要满足A的列数等于B的行数。   矩阵乘法很容易出错,尤其是两
【scipy.sparse包】Python稀疏矩阵 文章目录【scipy.sparse包】Python稀疏矩阵1. 前言2. 导入包3. 稀疏矩阵总览4. 稀疏矩阵详细介绍4.1 coo_matrix4.2 dok_matrix4.3 lil_matrix4.4 dia_matrix4.5 csc_matrix & csr_matrix4.6 bsr_matrix5. 稀疏矩阵的存取5.1
转载 2023-09-19 00:47:23
270阅读
上周五汇报一篇导师的论文,其中提及了使用四叉树来存储稀疏矩阵。抽空用Python把它实现了一下,做个总结。首先看论文中提到的一个样例:可以看到通过通过四叉树将稀疏矩阵化成最后的结果。这里注意其中的圆分别为中间结点的混合域M、都为0的空域E与分解到最后可能有值或含零元的密集域D。上图就是我将一个长为n的矩阵,通过四叉树化解到最小边长为d的矩阵小块图。这里的d是我们自己定义的最后化解的最小矩阵块。代码
一、scipy.sparse中七种稀疏矩阵类型1、bsr_matrix:分块压缩稀疏行格式 介绍  BSR矩阵中的inptr列表的第i个元素与i+1个元素是储存第i行的数据的列索引以及数据的区间索引,即indices[indptr[i]:indptr[i+1]]为第i行元素的列索引,data[indptr[i]: indptr[i+1]]为第i行元素的data。  在下面的例子中,对于第0行,in
转载 2024-02-10 12:20:44
94阅读
一、sparse模块:python中scipy模块中,有一个模块叫sparse模块,就是专门为了解决稀疏矩阵而生。本文的大部分内容,其实就是基于sparse模块而来的导入模块:from scipy import sparse二、七种矩阵类型coo_matrixdok_matrixlil_matrixdia_matrixcsr_matrixcsc_matrixbsr_matrix三、coo_matr
转载 2023-06-02 23:18:32
237阅读
目录矩阵稀疏矩阵稀疏矩阵的构建稀疏矩阵的销毁输出稀疏矩阵一般转置快速转置完整代码 矩阵在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。稀疏矩阵就是在矩阵中,若数值为0的元素数目远远多于非0元素的数目,并且非0元素分布没有规律时,则称该矩阵稀疏矩阵,是一种特殊的矩阵。为了节省空间,我们可以
转载 2024-01-12 18:48:00
96阅读
  • 1
  • 2
  • 3
  • 4
  • 5