看了很多博文,包括《统计学习知识》和西瓜书上对GMM算法的推导,总有些重要的步骤被略去(比如从公式一推到公式二,书上直接给出结果,却没有具体步骤),导致理解整个算法非常困难。后来幸运地发现一篇博文,使用了对我而言易于理解的语言,重要把整个推导过程疏通成功,最后在纸上手推了一遍,真是酣畅淋漓!算法实现很简单,结构跟K-均值形似,参数的推导过程不用体现在代码上,直接根据推导出来的公式计算就
转载
2023-11-18 10:11:51
138阅读
近期上了付费的语音识别相关课程,算是第一次系统学习语音识别相关知识,关于GMM-HMM模型还是没有理解得很透彻,写出来捋一捋思路。 一.单音素GMM-HMM模型 图一
一段2秒的音频信号,经过【分帧-预加重-加窗-fft-mel滤波器组-DCT】,得到Fbank/MFCC特征作为输入信号,此处若以帧长为25ms,帧移为25ms为例,可以得到80帧的输入信号,这80帧特征序列就
转载
2024-06-24 21:19:48
83阅读
注:本文主要参考Andrew Ng的Lecture notes 8,并结合自己的理解和扩展完成。
GMM简介
GMM(Gaussian mixture model) 混合高斯模型在机器学习、计算机视觉等领域有着广泛的应用。其典型的应用有概率密度估计、背景建模、聚类等。
图1 GMM用于聚类 图2 GMM用于概率密度
这个博客就是把最具有代表性的资料记录下来,前提,我假设你知道啥是MFCC,啥是VAD,啥是CMVN了.说话人识别学习路径无非就是 GMM-UBM -> JFA -> Ivector-PLDA -> DNN embeddings -> E2E 首先 GMM-UBM, 最经典代表作: Speaker Verification Using Adapted Gaussia
背景Python进行商业开发时, 需要有一定的安全意识, 为了不被轻易的逆向还原. 混淆和加密就有所必要了.代码混淆是将程序中的代码以某种规则转换为难以阅读和理解的代码的一种行为。1. 混淆减少py文件的注释、对代码顺序进行重排:混淆力度不够设计规则编写脚本或者使用现成的混淆工具,将对应的变量、函数、文件名、类名等进行不同程度的无意义的字符串替换: 单个文件或许可行,整个项目处理起来问题较多,涉及
转载
2023-08-28 10:30:34
129阅读
今天目的是爬取所有英雄皮肤在爬取所有之前,先完成一张皮肤的爬取打开anacond调出编译器Jupyter Notebook打开王者荣耀官网下拉找到位于网页右边的英雄/皮肤 点击【+更多】进入英雄皮肤页面按键盘F12调出网页代码点击进入调出页的【Network】(这里是谷歌浏览器,其他浏览器可能显示为’网络‘) 刷新网页 重新接收所有网页数据(不要关闭调出
转载
2024-01-09 22:22:45
30阅读
1.肤色检测 肤色检测技术利用了计算机对人体皮肤像素的分析过程,随着人脸检测技术,表情识别及手势识别等技术的快速发展,肤色应用领域日趋增多。肤色检测技术常用的方法有基于颜色空间、光谱特征以及肤色反射模型等方法,这些方法的主要步骤先进行颜色空间变换,然后再建立肤色模型。肤色检测中颜色空间有RGB、YCrCb、HSV和Lab等,通常在处理的时候是将RGB颜色空间变换成相应的颜色空间,对某种类型的图像
转载
2023-08-13 15:41:35
195阅读
em算法和gmm算法 GMM is a really popular clustering method you should know as a data scientist. K-means clustering is also a part of GMM. GMM can overcome the limitation of k-means clustering. In this post
转载
2024-07-27 16:31:01
344阅读
GMM算法
第一章引子假设放在你面前有5篮子鸡蛋,每个篮子有且仅有一种蛋,这些蛋表面上一模一样,就是每一种蛋涵盖有且只有一种维生素,分别是A、B、C、D、E。这个时候,你需要估计这五个篮子的鸡蛋的平均重量μ。 首先有个总的假设: 假设每一种维生素的鸡蛋的重量都服从高斯分布。 这个时候,因为每个篮子的鸡蛋包含有且只有一种,并且彼此之间相同的维生素,即每个篮子的鸡蛋都服从相同的分布,这个时候
转载
2023-08-31 10:07:46
249阅读
1.GMM高斯混合模型(Gaussian Mixture Model),是一种业界广泛使用的聚类算法。K-means算法可以被视为高斯混合模型(GMM)的一种特殊形式。1.1.高斯分布高斯分布(Gaussian distribution)有时也被称为正态分布(normal distribution)。 概率密度函数公式如下:参数 μ 表示均值,参数 σ 表示标准差。1.2.高斯混合模型指包含多个高
# 用Python实现肤色提取
肤色提取是计算机视觉中的一个重要任务,通常用于人脸检测、图像分析等应用场景。本文将指导你如何使用Python实现肤色提取,并详细介绍相应的代码。
## 整体流程
以下是实现肤色提取的整体步骤:
| 步骤 | 描述 |
|--------|------------------------------
用python进行人脸识别(五)基本原理代码 OpenCV的基本操作已经学会了,那么开始尝试进行人脸识别吧。 基本原理人类区分不同的人脸是根据鼻子、醉、眼睛、眉毛、肤色等等因素,这些因素的大小、间距、形状的不同,构成了形形色色的人脸,也构成了这个大千世界。人脸识别的前期就是按照这个思路进行,即几何特征法。但后来发现这玩应儿并不好用,发展出了许许多多的识别方法。如果人眼是根据鼻子、嘴巴这些组织的
转载
2023-12-12 21:27:35
143阅读
本文中的人体肤色检测功能采用 OpenCV 库实现。OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上. 它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
转载
2021-07-15 11:39:28
388阅读
本文所涉及的内容的先修知识:1、概率统计相关知识,统计机器学习;KL散度;信息熵;2、拉格朗日乘子法;3、KMeans聚类算法、混合高斯分布模型(GMM)和隐马尔可夫(HMM)模型。首先,EM算法的E是,Expectation,指的是期望;M代表的是Max。就如这个算法的名字本身所表现的那样,EM算法分两步走,E步骤和M步骤。在正式讲EM算法之前,我们先来考虑一个GMM的例子。现在我们有一堆数据样
转载
2023-12-05 04:07:45
90阅读
算法逻辑在这里: 贴之前先说下,本来呢是打算自己写一个的,在matlab 上,不过,实在是写不出来那么高效和健壮的,网上有很多实现的代码,例如上面参考里面的,那个代码明显有问题阿,然后因为那里面的代码与逻辑分析是一致的,那在其基础上修改看看,结果发现代码健壮性实在太差了,我的数据集是 70-by-2000 的矩阵,70个样本2000维,结果协方差的逆根本算不出来,全部是i
Note sth about GMM(Gaussian Mixtrue Model)高斯混合模型的终极理解高斯混合模型(GMM)及其EM算法的理解
这两篇博客讲得挺好,同时讲解了如何解决GMM参数问题的EM算法,其实GMM式子没有什么高深的地方,都是概率论的东西,主要是构思比较巧妙。动机:
GMM是用来拟合某种分布的。哪种?任意一种!当然,前提是参数足够多的情况下,所以实作其实并非拟合任意模型。
1 HSV 颜色空间 from: 把rgb转换到hsv空间,用h分量 进行识别,像素值在7~29之间 是肤色的几乎全部范围 识别会受到光照的影响。但是整体上准确度是较高的。 在白天 正常的明亮的光照下,效果非常好。 这是我在晚上拍摄的一张图像的处理 对于不同的环境(主要是光照条件),阈值应相应 变动以提高精确度 程序源码下载 2 YCrCb 源码下下载 
高斯混合模型(GMM)是一种常用的聚类模型,通常我们利用最大期望算法(EM)对高斯混合模型中的参数进行估计。本教程中,我们自己动手一步步实现高斯混合模型。GMM以及EM的完整python代码请看这里。 高斯混合模型(Gaussian Mixture Model,GMM)是一种软聚类模型。 GMM也可以看作是K-means的推广,因为GMM不仅是考虑到了数据分布的均值,也考
转载
2023-09-25 20:27:14
170阅读
ml概述本文中的人体肤色检测功能采用 OpenCV 库实现。OpenCV是一个基于BSD...
转载
2021-08-31 15:34:58
477阅读
概述本文中的人体肤色检测功能采用 OpenCV 库实现。OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux、Windows、Android和Mac OS操作系统上. 它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法。
本文主要使用了OpenC
转载
2021-06-28 13:17:43
236阅读