室师兄的报告,会后询问他看ESL的事宜。师兄说你不实现书中的算法就是偷懒,想想确实是这样。P维空间局部回归多维空间的表达式 如下:
minβ(x0)∑i=1NKλ(x0,xi)(yi−b(xi)Tβ(x0))2Kλ(x0,x)=D(||x−x0||λ)
||⋅||是欧几里得范数,也就是
||X||=|x1|2+...+|xp|2−−−−−−−−−−−−−√,书中说分数会趋向于
转载
2023-11-10 21:08:54
43阅读
平滑核的结构张量 python 是一种用于图像处理和信号分析的数学工具,旨在通过平滑核来捕捉数据的局部结构。本文将记录我在实现这一过程中的详细步骤,包括环境配置、编译过程、参数调优、定制开发、错误集锦和部署方案。
## 环境配置
在开始之前,首先需要配置相关的开发环境。以下是我所用的依赖项列表和版本信息。
1. 创建一个新的虚拟环境
2. 安装必要的依赖库
| 依赖项 | 版本
张量核架构是一种新兴的计算架构理念,特别适合于深度学习和大数据处理。它试图通过新颖的方式提升计算速度和效率,利用多维数据结构的优势来优化处理能力。在接下来的内容中,我们将详细探讨张量核架构的解决方案以及相关的技术实现。
## 背景描述
在现代计算中,数据的处理能力越来越受到重视,尤其是对深度学习模型的快速训练与推理需求。同时,张量核架构作为一种新型计算架构,能够充分利用张量(多维数组)这种数据
在上篇文章中我给出了高斯滤波的这个链接。现在对其进行翻译,黑色字为原文翻译,彩色字是我自己的注解。高斯平滑高斯平滑引言:高斯平滑是一个用来“模糊”图像,去除细节及噪声的2维卷积操作[convolution operator]。听起来它和均值滤波[mean filter]没什么两样,但它用了不同的卷积内核[kernel]——可以表达高斯(钟形)峰状分布[Gaussian (`bell-shaped'
转载
2024-04-02 06:03:11
284阅读
图卷积(6)——过平滑现象(1)过平滑现象的提出是在论文Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning中。作者将GCN用于半监督学习任务,发现采用多层GCN之后,会出现过平滑现象(over-smoothing)。 文章提出三个核心观点:拉普拉斯平滑:GCN中图卷积是特殊形式的拉普拉斯平滑,
转载
2024-02-26 15:54:31
77阅读
如果你对数据分析有一定的了解,那你一定听说过一些亲民好用的数据分析的工具,如Excel、Tableau、PowerBI等等等等,它们都是数据分析的得力助手。像经常使用这些根据的伙伴肯定也有苦恼的时候,不足之处也是显而易见:操作繁琐,复用性差,功能相对局限单一。很多经常会用到数据分析的伙伴会问有没有一款便捷好用的工具!肯定有啊,Python的出现和普及,很容易就能改变这些窘境!怎么解决
浅淡深度学习的发机机——张量计算张量计算是个看似陌生,实际上很常用的事物,它包括图形渲染的透明度混合、图像处理的滤镜、数学计算中的矩阵乘法、卷积等等,是图形引擎、图像算法、机器学习以及深度学习的基础。如何进行高效的张量计算,是OpenCV之类的图像库、OpenBlas / Eigen之类的高性能计算库以及MNN之类的深度学习推理引擎要解决的核心问题。 本文主要以端侧深度学习推理引擎MNN为示例,谈
转载
2023-11-08 22:42:25
196阅读
一. 概念:张量、算子 张量(tensor)理论是数学的一个分支学科,在力学中有重要应用。张量这一术语起源于力学,它最初是用来表示弹性介质中各点应力状态的,后来张量理论发展成为力学和物理学的一个有力的数学工具。张量之所以重要,在于它可以满足一切物理定律必须与坐标系的选择无关的特性。张量概念是矢量概念的推广,矢量是一阶
转载
2024-07-04 17:52:56
210阅读
首先比较一下Python列表(list)、Numpy数组(ndarray)、Tensorflow张量(Tensor)之间的区别:
>> Python列表:
元素可以使用不同的数据类型,可以嵌套
在内存中不是连续存放的,是一个动态的指针数组
读写效率低,占用内存空间大
不适合做数值计算
转载
2023-09-03 10:30:21
118阅读
文章目录BasicsAbout shapesIndexingSingle-axis indexingMulti-axis indexingManipulating ShapesMore on dtypesReferences import tensorflow as tf
import numpy as npBasics张量是具有统一类型(dtype)的多维数组。它和 NumPy 中的 np.a
转载
2024-01-17 06:40:19
69阅读
高斯核的卷积计算是可分离的,即高斯核的每一个维度可以分开处理。因此,一维卷积计算成为了实现3D高斯卷积的基础。一维卷积计算的性能直接影响了整个程序的性能。本篇将实现一维卷积功能,同时引出ICC编译器对多层嵌套循环场景的向量化优化倾向的调查结果。Base版本实现Base版本思路是依照滑窗算法,即卷积核依次移动并计算乘加和,更新到目标矩阵中。因为原始矩阵长度为432 * 4 Bytes,卷积核 31
转载
2023-11-27 06:37:35
28阅读
一、张量的操作: 拼接、切分、索引和变换一、张量的拼接与切分1、torch.cat()1、torch.cat()
功能: 将张量按维度dim进行拼接
torch.cat(tensors, dim=0, out=None)
tensors: 张量数据
dim: 需要拼接维度
主要有两种拼接方式:按行拼接和按列拼接,也就是dim=0和dim=1
e1 = torch.cat((A1,A2),
转载
2023-09-22 11:56:29
127阅读
陈天奇:内存张量结构DLPack的PythonAPI来了新智元2021-02-28 14:25:22【新智元导读】DLPack是一种开放的内存张量结构,用于在框架之间共享张量,近日,开发者陈天奇更新社交媒体详细介绍了为DLPack添加PythonAPI、语义和实现细节的内容。大家知道DLPack吗:深度学习从业人员或多或少都会有了解,诸如 Tensorflow、PyTorch 等深度学习框架,确实
转载
2023-11-14 09:20:24
29阅读
numpy处理张量的包。张量是矩阵向任意维度的推广(张量的维度通常叫做轴 axis)。标量(0D张量) 仅包含一个数字的张量叫作标量(scalar,也叫标量张量、零维张量、0D 张量)。向量(1D张量) 数字组成的数组叫做向量(vector)或一维张量(1D张量)。矩阵(2D张量) 向量组成的数组叫作矩阵(matrix)或二维张量(2D 张量)。3D张量和更高维张量选
转载
2023-10-06 22:54:59
87阅读
第2章 神经网络的数学基础张量(tensor)一般来说,当前所有机器学习系统都使用张量作为基本数据结构。张量是数字的容器,矩阵就是二维张量。张量是矩阵向任意维度的推广。张量的维度通常称作轴。仅包含一个数字的张量叫做标量(也叫 0D张量)在 Numpy 中,一个 float32 或 float64 的数字就是一个标量张量(或标量数组)。你可以用 ndim 属性来查看一个 Numpy 张量的轴的个数。
转载
2023-12-01 10:59:46
33阅读
文章目录一.张量的定义二.张量的生成1.torch.tensor()函数(1).创建(2).属性(3).张量求梯度2.torch.Tensor()类(1).普通创建(2).随机生成张量三.张量的数据类型1.获取张量的默认数据类型2.修改张量的默认数据类型3.张量数据类型转换4.torch和numpy转换(1).numpy 转 torch(2).torch 转 numpy四.张量的操作1.改变形状
转载
2023-08-17 21:19:07
146阅读
开始走起
Tensors
Tensors 类似于NumPy的 ndarrays, 另外,它还可以在GPU上使用加速计算。
from future import print_function
import torch构建一个 5x3 矩阵, 未初始化:
x = torch.empty(5, 3)
print(x)构建一个随机初始化的矩阵:
x = torch.rand(5, 3)
print(
pytorch张量运算张量的简介生成不同数据类型的张量list和numpy.ndarray转换为TensorTensor与Numpy Array之间的转换Tensor的基本类型转换(float转double,转byte等)torch.arange()、torch.range()、torch.linspace的区别:张量的重排(reshape、squeeze、unsqueeze、permute、t
转载
2023-05-26 10:08:33
176阅读
目录一、张量概述:二、初始化张量:直接使用Python列表转化为张量:通过Numpy数组(ndarray)转换为张量:通过已有的张量生成新的张量:通过指定数据维度生成张量: 三、张量属性:四、张量的运算:1.张量的索引和切片:2.张量的拼接:3.张量的乘法和矩阵乘法:乘法(点乘):矩阵乘法(叉乘):4.自动赋值运算:五、Tensor和Numpy的相互转换:1.由tensor转换为ndar
转载
2023-06-19 18:58:18
615阅读
5. Tensor 分解张量的最大特征之一是可以被紧密地表示为分解形式,并且我们有强大的保证方法来得到这些分解。在本教程中,我们将学习这些分解形式以及如何进行张量分解。关于张量分解的更多信息,请参考1。5.1. Tensor 的 Kruskal 形式其思想是将张量表示为一阶张量的和, 也就是向量的外积的和。这种表示可以通过应用典型的Canonical Polyadic 分解(也称为CANDECOM
转载
2023-10-23 09:30:20
191阅读