matlab矩阵矩阵 因为 所以该矩阵可逆,根据 ,其中 得到 计算矩阵A每个元素的代数余子式: 所以 可得: matlab计算如下: >> A1=[1 2 2;2 1 -2;2 -2 1] A1 = 1 2 2 2 1 -2 2 -2 1 >> >> >> A2=inv(A1) A2 = 0.
转载 2020-10-27 09:47:00
1992阅读
2评论
/** * Inverse of a Matrix: * Using Gauss-Jordan Elimination; * by Alexander Ezharjan. **/ #include<iostream> using namespace std; int main() { int i =
原创 2022-07-25 10:35:06
244阅读
1.待定系数法矩阵A=1, 2-1,-3假设所求的矩阵为a,bc,d则  从而可以得出方程组a + 2c = 1b + 2d = 0-a - 3c = 0-b - 3d = 1解得a=3; b=2; c= -1; d= -12.伴随矩阵矩阵伴随矩阵矩阵元素所对应的代数余子式,所构成的矩阵,转置后得到的新矩阵。我们先求出伴随矩阵A*=-3, -21 , 1接下来,求出矩阵
转载 2023-06-03 21:02:45
379阅读
【模板】矩阵Luogu P4783题目描述一个 \(N\times N\) 的矩阵矩阵。答案对 \({10}^9+7\)输入格式第一行有一个整数 \(N\),代表矩阵的大小;接下来 \(N\) 行,每行 \(N\) 个整数,其中第 \(i\) 行第 \(j\) 列的数代表矩阵中的元素 \(a_{i j}\)。输出格式若矩阵可逆,则输出 \(N\) 行,每行 \(N\) 个整数,其中第 \
转载 2023-07-31 22:35:22
247阅读
使用python和numpy进行矩阵:>>> import numpy as np>>> b = np.array([[2,3],[4,5]])>>> np.linalg.inv(b)array([[-2.5, 1.5],[ 2. , -1. ]])并非所有矩阵都可以求。 例如,奇异矩阵是不可逆的:>>> import
# coding=gbk from fractions import Fraction import numpy as np np.set_printoptions(formatter={'all':lambda x: str(Fraction(x).limit_denominator())}) m = int(input("输入矩阵行数:\n")) A = [[]for i in range(
1、linalg模块     线性代数是数学的一个重要分支。numpy.linalg模块包含线性代数的函数。使用这个模块,我们可以计算矩阵特征值、解线性方程组以及求解行列式等。1.1计算矩阵import numpy as npa=np.mat('1 0;0 2')print a#矩阵print a.Iprint np.linalg.inv(a)#原矩阵*
之前帮环境学院的朋友建立一个模型,用到了矩阵的逆运算,自己又懒的重新写代码。所以去网上找,发现很多垃圾代码,虽然名字起的挺啥的,但是不能用,最后和同学要了一段,和大家分享一下:#include<iostream>using namespace std;int const M=3;int const N =2*M;int main(){ int i,j,k; double a[M][M]={1,2,3,2,2,1,3,4,3}; double result[M][M]; double b[M][N]; cout<<"请输入矩阵的值(默认大小为3*3的矩阵):&
转载 2011-05-19 07:52:00
765阅读
1点赞
3评论
转载 2011-05-19 15:39:00
297阅读
2评论
内容索引矩阵 --- mat函数线性代数 --- numpy.linalg中的矩阵函数inv函数、行列式det函数、求解线性方程组的solve函数、内积dot函数、特征分解eigvals函数、eig函数、奇异值分解svd函数、广义矩阵的pinv函数In [1]:import numpy as np1. 矩阵在NumP中,矩阵是ndarray的子类,可以由专用的字符串格式来创建。我们可以使用ma
找一个同阶矩阵,验证   ;判断一下A是否可逆AX=I  这个X 怎么做呐。先把他弄成增广矩阵 A I这个长相 然后一直初等变换 直到I变到左边去 右边的就是了E AI左边变成I了 那E肯定是A-1 那I乘A-1 右边就是矩阵
原创 2023-04-04 12:45:42
154阅读
# Python中的矩阵 在数学和计算机科学中,矩阵是一个重要的概念。矩阵存在于许多应用中,特别是在数据分析、机器学习和科学计算等领域。本篇文章将介绍如何在Python中求解矩阵,同时也会提供一些相关的代码示例和实用工具的介绍。 ## 矩阵 在数学中,一个矩阵是另一个矩阵,使得两个矩阵的乘积为单位矩阵。对于一个给定的方阵 \(A\),其矩阵通常表示为 \(A^{-1}\
原创 2024-10-23 05:18:18
121阅读
# 使用 Python 矩阵 在数学中,矩阵是指一个矩阵与其矩阵相乘后得到单位矩阵矩阵是线性代数中的一个重要操作,它在多个领域,如物理、工程和数据科学中有广泛应用。本文将以 Python 为例,介绍如何求取一个矩阵,并讲解相关的概念和实现过程。 ## 矩阵的定义 在线性代数中,矩阵是一个二维数组,包含若干个数值。矩阵可以用来表示线性方程组、线性变换等。只有方阵(行数等于列
原创 2024-09-20 05:43:05
112阅读
1.背景介绍矩阵是线性代数中一个重要的概念,它可以用来解方程组、求解线性系统等问题。在实际应用中,矩阵广泛地出现在各个领域,如计算机图形学、机器学习、信号处理等。然而,计算矩阵的复杂性和计算成本也是一大挑战。因此,了解矩阵的数学基础和实践技巧至关重要。本文将从以下几个方面进行阐述:背景介绍核心概念与联系核心算法原理和具体操作步骤以及数学模型公式详细讲解具体代码实例和详细解释说明未来发展趋势
不甘心寒假就要收尾了。 回到学校,整理完行李,再收拾一下U盘里的东西。看到刚学线代那会儿瞎整的矩阵的代码。
IT
原创 2021-07-22 13:51:58
217阅读
题目 P4783 一个 $N \times N$ 的矩阵矩阵。答案对 $10^9+7$ 取模。若不可逆,输出 "No Solution"。 分析 由线性代数的知识,矩阵A的矩阵时, 只需在A的右边补充一个单位矩阵,进行初等行变换,当A变成单位矩阵时,右边的就是A的矩阵。 简单的证明:$A
转载 2019-10-02 21:48:00
254阅读
2评论
在数值计算和数据处理的领域中,矩阵是一个非常重要的操作。我们在Python中进行矩阵时,可能会遇到一些错误和异常现象。本文将详细讲述如何有效解决“矩阵python”的问题,并为这类问题提供一些可行的预防优化措施。 ## 问题背景 在很多机器学习和数据科学的应用中,我们常常需要通过矩阵运算来取得结果。比如,在解决线性方程组、进行线性回归等情况下,矩阵是不可或缺的一部分。假设我们有
原创 6月前
71阅读
在用python写2048小项目中,学习到了矩阵(就是二维列表)转置和翻转地代码,非常方便快捷,两种操作都只需要一行代码,显示了python强大地威力,下面写出这两行代码并做一个解析:# 矩阵转置 def transpose(matrix): return [list(row) for row in zip(*matrix)] #矩阵水平翻转 def invert(matrix): return
#include <cmath> #include <iostream> #include <iomanip> #include <cstdlib> #include <functional> #include <vector> #include <algorithm> using namesp
原创 2009-04-06 20:12:14
1508阅读
矩阵
转载 2019-02-15 09:21:00
149阅读
2评论
  • 1
  • 2
  • 3
  • 4
  • 5