背景:马尔可夫过程(Markov process)是一类随机过程。它的原始模型马尔科夫链,由俄国数学家A.A. Markov于1907年提出。马尔可夫过程是研究离散时间动态系统状态空间的重要方法,它的数学基础是随机过程理论。目录1、马尔科夫链(Markov Chain)2、隐马尔科夫模型(Hidden Markov Model,HMM)1、马尔科夫链(Markov Chain)马尔可夫过
转载
2024-01-02 20:48:47
63阅读
####本节书摘来自华章出版社《深度学习导论及案例分析》一书中的第2章,第2.9节,作者李玉鑑 张婷2.9马尔可夫链从理论上说,前面提到的概率图模型都可以看作是对马尔可夫链(Markov Chain,MC)的推广和发展。因此,马尔可夫链实际上是一种非常经典又相对简单的概率图模型,但它侧重于刻画一个在时间上离散的随机过程。其特点在于,随机变量在下一时刻的取值状态只依赖于当前状态,与之前的状态无关。一
转载
2024-05-30 11:23:05
40阅读
前言:彩票是一个坑,千万不要往里面跳。任何预测彩票的方法都不可能100%,都只能说比你盲目去买要多那么一些机会而已。 已经3个月没写博客了,因为业余时间一直在研究彩票,发现还是有很多乐趣,偶尔买买,娱乐一下。本文的目的是向大家分享一个经典的数学预测算法的思路以及代码。对于这个马尔可夫链模型,我本人以前也只是听说过,研究不深,如有错误,还请赐教,互相学习。1.马尔可夫链预测模型介绍 马尔可夫链是
转载
2024-06-20 17:56:27
113阅读
1 马尔可夫性质 (Markov Property) 我们设状态的历史为(包含了之前的所有状态) 如果一个状态转移是符合马尔可夫性质的,也就是满足如下条件: &nbs
马尔可夫链模型概念:描述一类重要的随机动态系统(过程)的模型。该过程时间、状态均为离散 的随机转移过程。 特点: 1.系统在每个时期所处的状态是随机的。 2.从一时期到下时期的状态按一定概率转移。 3.下时期状态只取决于本时期状态和转移概率。即已知现在,将来与过去无关(无后效性)马氏链的基本方程状态: Xn=1,2,...k(n=1,2,...)
转载
2024-03-08 12:58:57
210阅读
马尔科夫链在机器学习算法中,马尔可夫链(Markov chain)是个很重要的概念。马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫(俄语:Андрей Андреевич Марков)得名。1 简介马尔科夫链即为状态空间中从一个状态到另一个状态转换的随机过程。该过程要求具备“无记忆”的性质:
转载
2024-05-20 23:51:49
104阅读
目录隐马尔科夫模型的结构马尔科夫链与隐马尔科夫模型实例HMM的要素模型的性质推理问题:HMM的状态解码隐状态解码问题最大路径概率与维特比算法使用维特比算法解码实例演示基于Python对盒子摸球实验进行状态解码 隐马尔科夫模型的结构马尔科夫链与隐马尔科夫模型隐马尔科夫模型的全称为 Hidden Markov Model(HMM),这是一种统计模型,广泛应用于语音识别,词性自动标注等问题。马尔科夫链
文章目录1. 马尔可夫网络、马尔可夫模型、马尔可夫过程、贝叶斯网络的区别2. 马尔可夫模型2.1 马尔可夫过程3. 隐马尔可夫模型(HMM)3.1 隐马尔可夫三大问题3.1.1 第一个问题解法3.1.2 第二个问题解法3.1.3 第三个问题解法4. 马尔可夫网络4.1 因子图4.2 马尔可夫网络5. 条件随机场(CRF)6. EM算法、HMM、CRF的比较7. 参考文献8. 词性标注代码实现 1
author: lunar
date: Sun 06 Sep 2020 03:33:06 PM CST马尔科夫链模型马尔科夫链定义现实中有这样的现象: 某一系统在已知现在情况的条件下, 其未来时刻的状态就只与现在有关, 而与未来无关. 比如在已知超市当前累积营业额的情况下, 未来的任一时刻的累计营业额都与现在以前的任一时刻的营业额无关. 我们描述这类随机现象的数学模型为马尔科夫链模型, 简称马氏
转载
2023-12-11 11:08:46
48阅读
本文主要是在阅读过程中对本书的一些概念摘录,包括一些个人的理解,主要是思想理解不涉及到复杂的公式推导。会不定期更新,若有不准确的地方,欢迎留言指正交流本文完整代码github:anlongstory/awsome-ML-DL-leaninggithub.com第 10 章 隐马尔可夫模型模型基本假设齐次马尔可夫性假设:隐藏的马尔可夫链在任意时刻 t 的状态只依赖于其前一时刻的状态,与其他时刻的状态
转载
2024-01-23 17:19:23
45阅读
说明这个是以前写的代码,回顾一下内容1 基础理论概要1 HMM 从信号处理的角度出发2 本质上HMM本身要处理的问题类型是有更大拓展意义的(毕竟大多数信息处理都可以视为一个通信系统)3 不过处理人类决策相关的系统HMM不能直接胜任(更适合处理自然类的问题)4 Deterministic Model(确定性模型) 处理一些具体的特征5 Statistical Model(统计性模型) 只考虑信号的统
转载
2024-02-26 17:37:12
66阅读
# 马尔可夫链预测轨迹的实现
马尔可夫链是一种用于描述随机过程的数学模型,广泛用于预测轨迹。在这篇文章中,我们将探讨如何在Java中实现一个简单的马尔可夫链预测模型。以下是实现的基本步骤:
## 流程步骤
| 步骤 | 描述 |
|------|----------------------------------------
本文主要介绍马尔可夫链的定义,通过转移概率和转移概率矩阵来研究马尔可夫链的有限维分布。
目录第二讲 马尔可夫链及其概率分布一、马尔可夫链的定义Part 1:条件概率Part 2:马尔可夫链的定义二、转移概率和转移矩阵Part 1:转移概率的定义Part 2:时齐的马尔可夫链三、有限维分布和 C-K 方程Part 1:C-K 方程Part 2:有限维分布第
转载
2024-05-08 09:57:08
146阅读
目录 前言 一、马尔可夫链的定义 二、转移概率矩阵
转载
2023-10-11 09:19:08
508阅读
马尔可夫链简单介绍马尔可夫链是一个经典算法,马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫(俄语:Андрей Андреевич Марков)得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的
转载
2023-06-19 15:30:33
212阅读
隐马尔科夫模型将会从以下几个方面进行叙述:1 隐马尔科夫模型的概率计算法 2 隐马尔科夫模型的学习算法 3 隐马尔科夫模型的预测算法 隐马尔科夫模型其实有很多重要的应用比如说:语音识别、自然语言处理、生物信息、模式识别等等 同样先说一下什么是马尔科夫,这个名字感觉就像高斯一样,无时无刻的在你的生活中,这里给出马尔科夫链的相关解释供参考:马尔可夫链是满足马尔可夫性
转载
2024-01-24 10:41:18
15阅读
相信学过随机过程的同学们,一定会知道马尔科夫链。这是一种利用统计方法和模型对大自然中的事物进行处理和预测的算法,例如对股票市场的走向进行判断,对话预测,诗词创作等等。既然马尔科夫链的用处这么广泛,那我们有理由好好认识它一下。马尔科夫链的图例其实马尔科夫链可以看作是是一种较为简单的概率图模型,每个节点以单向或双向的连接方式嵌入到同一图空间内。 我们来看一条比较简单的例子。 其中每个节点代表的是要分析
转载
2024-01-25 20:50:00
51阅读
前言隐马尔可夫模型(HMM)是可用于标注问题的统计学习模型,描述由隐藏的马尔可夫链随机生成观测序列的过程,属于生成模型。马尔可夫模型理论与分析参考《统计学习方法》这本书,书上已经讲得很详细,本文只是想详细分析一下前向算法和后向算法,加深对算法的理解,并希望能帮助到他人。前向算法理论分析定义前向算法的定义.PNG定义解析:由于每个状态生成一个观测变量,那么在t时刻就会生成t个观测变量,在t时刻处于状
转载
2023-10-06 22:41:58
241阅读
隐马尔可夫模型(Hidden Markov Model,HMM)作为一种统计分析模型,创立于20世纪70年代。80年代得到了传播和发展,成为信号处理的一个重要方向,现已成功地用于语音识别,行为识别,文字识别以及故障诊断等领域。基本理论隐马尔可夫模型是马尔可夫链的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有相
转载
2024-02-06 19:38:40
74阅读
马尔可夫模型是由Andrei A. Markov于1913年提出的∙∙SS是一个由有限个状态组成的集合S={1,2,3,…,n−1,n}S={1,2,3,…,n−1,n} 随机序列XXtt时刻所处的状态为qtqt,其中qt∈Sqt∈S,若有:P(qt=j|qt−1=i,qt−2=k,⋯)=P(qt=j|qt−1=i)P(qt=j|qt−1=i,qt−2=k,⋯)=P(qt=j|qt−1=i)aij