机器学习:定义一、给予计算机能自我学习的能力而不是编程。定义二、对于某类任务T和性能度量P,如果一个计算机程序在T上以P衡量的性能随着经验E而自我完善,那么我们称这个计算机程序在从经验E学习 监督学习在有监督的学习中,我们得到了一个数据集,并且已经知道正确的输出应该是什么样的,我们认为输入和输出之间
转载
2019-12-04 15:19:00
108阅读
2评论
监督学习是机器学习的类型,其中机器使用“标记好”的训练数据进行训练,并基于该数据,机器预测输出。
自理解机器学习的概念时,没有深刻理解监督学习和无监督学习的区别,在网上查找了部分资料,现在总结如下:总的来说,机器学习任务将根据训练样本是否有label,可以分为监督学习和无监督学习,这是最简单直接的区别。那么问题来了,什么是label呢,简单的讲字面意思是标签,实际的作用就是对数据的一种标注,就是学习时我们标注的target值。
转载
2018-10-05 08:23:44
181阅读
文章目录监督学习算法1.定义2.分类回归问题分类问题无监督学习算法1.定义2.分类聚类机器学习算法中多种可...
https://www.toutiao.com/a6673066493946626574/AI想必大家都知道,在机器学习训练一个模型的过程中需要大量的数据进行喂养。根据训练的模型不同,一般有如下的几种机器学习方法:监督学习 无监督学习 半监督学习 强化学习今天我们就来介绍以上的四种学习方式。模型在介绍四种学习方法之前,我们先来介绍一下模型。什么是模型呢?模型其实就相...
转载
2019-03-28 08:45:27
2788阅读
1 、名词监督学习 : supervised learning 无监督学习 : unsupervised learning 半监督学习 : semi-supervised learning2 、 概念监督学习:亦称监督训练、有教师学习。是利用已知类别的样本(即有标记的样本 labeled sample,已知其相应的类别),调整分类器的参数,训练得到一个最优模型,使其达到所要求性
转载
精选
2016-11-05 13:04:58
2532阅读
机器学习分为:监督学习,无监督学习,半监督学习(也可以用hinton所说的强化学习)等。 监督与无监督区别: 1. 有监督学习方法必须要有训练集与测试样本。在训练集中找规律,而对测试样本使用这种规律。而非监督学习没有训练集,只有一组数据,在该组数据集内寻找规律。 2. 有监督学习的方法就是识别事物,
转载
2019-05-14 16:33:00
531阅读
2评论
在机器学习(Machine learning)领域。主要有三类不同的学习方法: 监督学习(Supervised learning)、 非监督学习(Unsupervised learning)、 半监督学习(Semi-supervised learning), 监督学习:通过已有的一部分输入数据与输出
转载
2017-04-22 20:07:00
106阅读
2评论
一、基本概念1 特征(feature) 数据的特征。举例:书的内容2 标签(label) 数据的标签。举例:书属于的类别,例如“过已有的
**************************************注:本系列博客是博主学习Stanford大学 Andrew Ng 教授的《机器学习》课程笔记。博主深感学过课程后,不进行总结非常easy遗忘。依据课程加上自己对不明确问题的补充遂有此系列博客。本系列博客包含线性回归、逻辑回归、神经网络、机器学习的应用和系统设计、支持向量机、聚类、将维、异常检測、推荐系统及大规模机器学习等内
转载
2017-06-21 11:40:00
139阅读
2评论
一、监督学习(supervised learning) 通过已有的训练样本(即已知数据以及其对应的输出)来训练,从而得到一个最优模型,再利用这个模型将所有新的数据样本映射为相应的输出结果,对输出结果进行简单的判 断从而实现分类的目的,那么这个最优模型也就具有了对未知数据进行分类的能力。监督学习中只要
转载
2017-06-09 10:44:00
136阅读
2评论
在机器学习(Machine learning)领域,主要有三类不同的学习方法: 监督学习(Supervised learning)、 非监督学习(Unsupervised learning)、 半监督学习(Semi-supervised learning), 监督学习:通过已有的一部分输入数据与输出数据之间的对应关系,生成一个函数,将输入映射到合适的输出,例如分类。 非监督学习:直接
作者:Andre Ye编译:ronghuaiyang导读为什么半监督学习是机器学习的未来。监督学习是人工智能领域的第一种学习类型。从它的概念开始,无数的算法,从简单的逻辑回归到大规模的神...
转载
2021-08-30 17:18:25
189阅读
半监督学习 事实上,未标记样本虽然未直接包含标记信息,但若它们与有标记样本是从同样的数据源独立同分布采样而来,则它们所包含的关于数据分布的信息对建立模型将有很大的益。下图给出了一个直观的例子,若仅基于图中的一个正例和一个反例,则由于待判别样本恰位于两者正中间,大体上只能随机猜测;若能观察到图中的未标
转载
2018-10-26 20:21:00
486阅读
2评论
目录Supervised LearningMassive Unlabeled dataUnsupervised LearningWhy needed Supervised Learning Massive Unlabeled data Unsupervised Learning Why needed
转载
2020-12-11 23:48:00
154阅读
2评论
监督学习 必须明确目标变量的值,以便算法可以发现特征和目标变量之间的关系。给定一组数据,我们就该知道输出结果应该是什么样子,并且知道输出结果和输入结果之间有一个特定的关系。 样本集:训练数据+测试数据 训练样本 = 特征 + 目标变量(label: 分类-离散值/回归-连续值) 特征通常是训练样本集 ...
转载
2021-10-19 21:18:00
48阅读
2评论