强化学习,是一种源于试错方式,遵循马尔科夫决策过程的机器学习方法。目前强化学习已广泛的出现在人工智能的应用中,国内各互联网公司从 2016 年开始均开始关注强化学习,目前已经公布了许多基于强化学习的研究与应用。当然最出名的还是 DeepMind 当年使用强化学习训练 AI 玩雅利达 2600 游戏的实验,这让 Google 迅速收购了 DeepMind,也把强化学习再度推上人工智能技术顶峰,同时为后来的 AlphaGo, AlphaZero 奠定了技术基础。**
原创
2019-04-09 12:52:33
453阅读
深度强化学习是一种机器学习,其中智能体(Agent,也翻译作代理)通过执行操作(Action)和查看结果(R
转载
2022-07-29 09:09:25
846阅读
强化学习强化学习强化学习Python 还能实现哪些 AI 游戏?附上代码一起来一把!
原创
2021-08-02 14:21:53
667阅读
强化学习强化学习强化学习DQNDDPGPPOA3C
原创
2021-08-02 15:00:43
199阅读
【强化学习】⚠️手把手带你走进强化学习 1⚠️ 强化学习简介.
原创
2021-09-23 04:02:53
191阅读
一、前述本文通过一个案例来讲解Q-Learning二、具体1、案例假设我们需要走到5房间。转变为如下图:先构造奖励,达到5,即能够走得5的action则说明奖励比较高设置成100,没有达到5说明奖励比较低,设置成0。Q-learning实现步骤:2、案例详解:第一步的Q(1,5):最开始的Q矩阵都是零矩阵,迭代完之后Q(1,5)是...
强化学习的理论框架——马科夫决策过程(MDP)强化学习,本质上是让计算机学会自主决策的方法论。而马可夫决策过程(Markovdecisionprocess,MDP)则是强化学习中,对现实问题进行建模的数学模型,它把所有的现实问题都抽象为:智能体与环境的互动过程;在互动过程中的每个时间步,智能体都收到环境的状态(环境向智能体呈现一种情况),智能体必须选择相应的响应动作,然后在下一个时间步,智能体获得
转载
2018-05-02 10:57:54
5009阅读
、强化学习入门简介强化学习是一种非监督学习的机器学习方法,对比监督学习,强化学习
从离散空间到连续空间在之前提到的强化学习任务中,都是有限的MDP框架,即动作空间及状态空间的个数都是有限个。然而,现实生活中的很多问题动作空间与状态空间并非离散的,而是连续的。那么如何用强化学习的理论基础去解决问题呢?主要有两种思路:离散化处理、函数逼近。离散化处理:指的是把连续空间用区域o化的方式划分成有限的个数。具体的处理手法有Tilecoding及Coarsecoding。函数逼近:指的是把
转载
2018-05-02 11:08:53
9974阅读
点赞
【强化学习】⚠️手把手带你走进强化学习 1⚠️ 强化学习简介.
原创
2022-01-12 09:38:08
675阅读
文章目录 0 写在前面 1 推荐书籍 2 入门简介 2.1 机器学习 2.1 RL的特点 2.3 实例 3 rewards 3.1 奖励假设 3.2 举例 4 Sequential Decision Making(序列决策制定) 4.1 两个基本问题 4.1.1 强化学习 4.1.2 规划 5 智能
转载
2020-03-04 12:26:00
374阅读
2评论
强化学习(reinforcement learning,RL)讨论的问题是智能体(agent)怎么在复杂、不确定的环境(environment)中最大化它能获得的奖励。如图1.1 所示,强化学习由两部分组成:智能体和环境。在强化学习过程中,智能体与环境一直在交互。智能体在环境中获取某个状
原创
2022-04-15 14:33:01
682阅读
1&sn=ed3882e91fccd92d47573de5a97e96c4&a...
结果,通过不停地试错返回结果2.数据以序列形式输入,监督
https://www.bilibili.com/video/BV13W411Y75P?from=search&seid=8762394437787310776强化学习的专业术语:state :当前的状态 action:当前Agent(智能
原创
2021-11-20 15:26:20
202阅读