DCT变换可谓是JPEG编码原理里面数学难度最高的一环,我也是因为DCT变换的算法才对JPEG编码感兴趣。这一章我就把我对DCT的研究心得体会分享出来。1.离散余弦变换(DCT)介绍如果想深入了解这一章,就需要从傅里叶变换开始。学过《信号与系统》或者《数学信号处理》的朋友,肯定都对傅里叶变换这一章特别有印象(mengbi),这里有一个对于理解傅里叶变换有很大的帮助。我们从离散傅里叶变换也就是DFT
转载
2023-07-10 22:07:21
153阅读
% S
原创
2022-09-21 09:57:52
108阅读
基于DCT字典图像稀疏去噪算法学习 理论基础: 评价一副图像质量的指标(MSE和PSNR): 1.MSE(均方误差): 其中,f'(i,j)和f(i,j)分别表示的是待评价图像和原始图像,M,N分别表示图像的长与宽。2.PSNR(峰值信噪比):PSNR本质上与MSE相同,但它与图像的量化灰度级相联系,其表达式为: 主函数:main
转载
2023-08-25 16:00:51
101阅读
一、 实验目的 了解频域水印的特点,掌握基于DCT系数关系的图像水印算法原理,设计并实现一种基于DCT域的图像水印算法,嵌入二值图像水印信息,掌握水印图像的归一化函数的计算方法,并对携秘图像进行攻击,提取攻击后的水印二值图像,计算NC的值。二、 实验环境 (1) Windows或Linux换作系统 (2) Python3 环境 (3) Python的 opencv-python、 numpy、 m
转载
2024-01-17 07:57:55
78阅读
# DCT隐写技术在JAVA中的应用
## 引言
隐写技术是一种将信息隐藏在其他介质中的技术,常见于图像、音频等文件中。离散余弦变换(DCT)是隐写中一种常用的方法,尤其适用于图像,因为它可以在频域内对图像进行处理,从而降低被察觉的可能性。本文将介绍如何使用JAVA实现DCT隐写技术,并展示相应的代码示例。
## DCT算法简介
DCT是一种常用的信号处理技术,能够将信号从时域转换到频域。
在当今的开发环境中,使用Java编程语言进行数据采集和处理变得日益重要。在本篇文章中,我将探讨一个常见但复杂的Java DCT(数据采集工具)源代码相关问题的整个解决过程,包括问题背景、错误现象、根因分析、解决方案、验证测试和预防优化。
### 问题背景
在某个数据处理项目中,我们需要通过Java DCT代码从多个数据源收集信息,进一步进行分析。开发团队在测试阶段发现,当系统处理大批量数据时,
如果你搜索网上分析dcl为什么在java中失效的原因,都会谈到编译器会做优化云云,我相信大家看到这个一定会觉得很沮丧、很无助,对自己写的程序很没信心。我很理解这种感受,因为我也经历过,这或许是为什么网上一直有人喜欢谈dcl的原因。如果放在java5之前,从编译器的角度去解释dcl也无可厚非,在java5的JMM(内存模型)已经得到很大的修正,如果到现在还只能从编译器的角度去解释dcl,那简直就在污
转载
2023-08-27 17:26:34
46阅读
大四毕业后的这个暑假正式开始学习openCV参考教程:唐宇迪老师: https://www.bilibili.com/video/BV1tb4y1C7j71.傅里叶变换傅里叶变换的作用高频:变化剧烈的灰度分量,例如边界低频:变化缓慢的灰度分量,例如一片大海滤波:低通滤波器:只保留低频,会使图像模糊高通滤波器:只保留高频,会使得图像细节增强opencv中主要是cv2.dft()和cv2.idft()
转载
2024-02-22 14:48:02
566阅读
一,背景介绍 DCT,即离散余弦变换,常用图像压缩算法,步骤如下 1)分割,首先将图像分割成8x8或16x16的小块; 2)DCT变换,对每个小块进行DCT变换; 3)舍弃高频系数(AC系数),保留低频信息(DC系数)。高频系数一般保存的是图像的边界、纹理信息,低频信息主要是保存的图像中平坦区域信息。 4)图像的低频和高频,高频区域指的是空域图像中突变程度大的区域(比如目标边界区域),通常的纹理丰
转载
2023-11-09 08:53:32
90阅读
在数字图像处理中,为了同时减弱或去除数字图像数据相关性,可以用二维离散余弦变换,将图像从空间域转换到DCT变换域。定义一个大小为M*N的图像g(i,k),二维离散余弦变换G(m,n)为图像(m,n)在0,1,2,...N-1的DCT域系数,相应的二维离散余弦变换公式为: &nbs
转载
2023-11-23 14:58:08
245阅读
一、引言DCT变换的全称是离散余弦变换(Discrete Cosine Transform),主要用于将数据或图像的压缩,能够将空域的信号转换到频域上,具有良好的去相关性的性能。DCT变换本身是无损的,但是在图像编码等领域给接下来的量化、哈弗曼编码等创造了很好的条件,同时,由于DCT变换时对称的,所以,我们可以在量化编码后利用DCT反变换,在接收端恢复原始的图像信息。DCT变换在当前的图像分析已经
转载
2023-09-04 13:19:40
288阅读
JDBC是一种可以执行的SQL语句的Java API,是连接数据库和Java应用程序的纽带。JDBC-ODBC桥 JDBC-ODBC桥是一个JDBC驱动程序,完成了从JDBC操作到ODBC操作之间的转换工作,允许JDBC驱动程序被用作ODBC的驱动程序。使用JDBC-ODBC桥连接数据库的步骤如下: (1)首先加载JDBC-ODBC桥的驱动程序,代码如下:Class.forName("sun.jd
转载
2024-02-02 10:25:44
41阅读
方案一、选择中频系数进行水印的嵌入Dct域分别低频中频和高频区域,传统的dct将水印嵌在低频区域,即能量较为集中的部分,会降低嵌入后的不透明性。选择中频或高频系数嵌入dct水印有助于提升水印的不可见性。但是高频区域的鲁棒性会影响水印嵌入的强度,且大部分图像处理图像攻击对于高频区域的影响也比较大,水印嵌入在高频区域鲁棒性很低,所以中频区域是较为折中的选择,即权衡了水印的不可见性和鲁棒性,保持了低频和
转载
2023-07-24 18:02:07
141阅读
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm在离散的空间上,有很多方法可以用来计算近似导数,在使用3×3的Sobel算子时,可能计算结果并不太精准。OpenCV提供了Scharr算子,该算子具有和Sobel算子同样的速度,且精度更高。可以将Scharr算子看作对Sobel算子的改进,其核通常为:OpenCV提供了函数cv2.Scharr
6.2 Python图像处理之图像编码技术和标准-余弦变换编码 文章目录6.2 Python图像处理之图像编码技术和标准-余弦变换编码1 算法原理2 代码3 效果 (6)图像编码技术和标准,包括预测编码(DPCM编码、余弦变换编码、小波变换编码) 1 算法原理图像处理中常用的正交变换除了傅里叶变换外,还有其他一些有用的正交变换,其中离散余弦就是一种。离散余弦变换表示为 DCT( Discrete
转载
2023-09-16 13:55:00
347阅读
MPEG采用了Ahmed(一个巨牛的数学家) 等人于70年代提出的离散余弦变换(DCT-Discrete Cosine Transform)压缩算法,降低视频信号的空间冗余度。
DCT将运动补偿误差或原画面信息块转换成代表不同频率分量的系数集,这有两个优点:其一,信号常将其能量的大部分集中于频率域的1个小范围内,这样一来,描述不重要的分量只需要很少的比特
转载
2023-12-17 13:07:43
64阅读
JPEG标准主要采用了基于块的DCT变换编码,同时综合应用了游程编码和霍夫曼编码等。其有损压缩算法编码的大致流程如下:第一步,对图像块(把整个图像分成多个 \( 8 \times 8 \) 子块)进行DCT变换,得到DCT系数;第二步,根据量化表对DCT系数进行量化;第三步,对DCT系数中的直流(DC)系数进行差分预测,对交流(AC)系数按Zig-Zig顺序重新排序;第四步,对第三步得到的系数
转载
2023-12-20 21:33:59
266阅读
目录数字图像处理所有的基本数字工具介绍算术运算集合运算和逻辑运算空间运算向量与矩阵运算图像变换图像和随机变量 数字图像处理所有的基本数字工具介绍算术运算# 相加
img_ori = cv2.imread("DIP_Figures/DIP3E_Original_Images_CH02/Fig0226(galaxy_pair_original).tif", 0)
dst = np.zeros_li
转载
2024-01-04 11:32:03
169阅读
# 深入理解PyTorch中的DCT变换
离散余弦变换(DCT)是一种在信号处理和图像处理领域非常重要的变换。它通常用于数据压缩,例如JPEG图像压缩。本文将介绍DCT的基本概念,如何在PyTorch中实现DCT,以及在实际应用中的一些示例。
## DCT的基本概念
离散余弦变换(DCT)与傅里叶变换密切相关,它将信号从时域转换到频域。通过将信号表达为一组余弦函数,DCT在保留信号的主要特征
原创
2024-10-26 03:49:45
634阅读
在本文中,我将探讨 DCT 算法的 Python 实现,包括背景、技术原理、架构解析、源码分析、应用场景和案例分析。
DCT(离散余弦变换)是一种广泛应用于信号处理和图像压缩领域的算法,尤其是在 JPEG 图像压缩中,DCT 通过转化图像数据为频域信息,有效降低冗余数据,以实现高效的数据压缩。
> 【引用】在图像处理中,DCT 可以将空间域信号转换为频率域信号,从而使得信号的高频部分可以被抑制