问题提出实际生产过程中,出产投入使用之前,经常会评价某些参数是否有异常,然后再判断是否要重新检测。评价并不是简单的根据特定参数的阈值来的,而是根据宏观上产出群体的所有参数分布得出的。 比如生成飞机引擎,震动和热量参数,对所有出产的引擎进行测试,得到如下分布: 为了评价这种差异,定性分析如下: 高斯分布从上面的直观感受、定性分析可知越接近中心区域的越不可能是异常。为了定量分析,引入高斯分布。
1、Numpy更高效 使用Python的地方,就能看到Numpy,尤其是需要数值计算的地方,Numpy的高性能更是体现的淋漓尽致。 它基于Python,提供远高于Python的高性能向量、矩阵和更高维度的数据结构。之所以性能高是由于它在密集型计算任务中,向量化操作是用C和Fortran代码实现。 2、导入Numpy 只需要一行代码就能导入: fro
一、正态分布/高斯分布异常检测假设特征符合正太分布(Normal Distribution)/高斯分布(Gaussian Distribution): 如果,我们认为变量x服从正态分布,则其可以表示为: 服从正态分布的函数,其有两个重要指标:期望: 其中: 整个分布的概率密度函数为: 整个概率密度函数的累加和为1,即表示100%二、异常检测算法假设,我们有一组无标签(没有y)的训练集,这些训练集有
基于统计学的方法掌握关于高斯分布的异常检测一元高斯分布高斯分布也称正态分布, 我们可以利用已有的数据来预测总体中的  和  的计算方法如下:概率密度函数为:选定一个参数ε,将P(x)=ε作为我们的判定边界,当P(x)>ε时预测数据为正常数据,否则为异常。多元高斯分布构建协方差矩阵,使用所有特征来构建p(x)首先我们先计算所有特征的平均值及协方
一,一维高斯分布  N(μ,δ2)  二,多维高斯分布v=[x,y]T。  图2.1  图2.2注意:这两种图的区别。2.1图是二维高斯分布的各采样点的分布,这些点是二维分布的高斯点,通过点的疏密才能看出分布概率的大小。2.2图是二维高斯分布点和点的概率分布图,通过高度就可以看出分布在各点的概率分布,但是这个图也是二维高斯分布的描述。所以说,符合SGM分布的二维点在平面上应该近
 多元高斯分布(multivariate gaussian distribution)有一些优势也有一些劣势,它能捕获一些之前算法检测不出来的异常一个例子:为什么要引入多元高斯分布使用数据中心监控机器的例子,有两个features,x1:CUP Load, x2:Memory Use.将这两个features当做高斯分布来进行建模,如上图所示。假如在测试集中有一个如图上方的绿色的样本,它
“每个人都相信[高斯分布]:试验者,因为他们认为数学和数学家可对其进行证明;因为他们相信它是通过观察确立的。”—— W. Lippmann**高斯分布的重要性** 统计检验可以分析一组特定数据,以得出更普遍的结论。有多种方法可以做到这一点,最常见的是基于“群体中数据有特定分布”的假设。目前,最常用的分布是【钟形高斯分布(又称“正态分布”)】。该假设是许多统计检验(例如,t检验和方差分析,以及线性和
White检验是一种用于检验线性回归模型中误差项同方差的统计方法。这种检验方法可以在各种数据分析场景下被广泛应用,如金融分析、市场研究和工程学。然而,如何在Python中实现White检验,则是许多数据科学家在数据建模过程中的一个常见挑战。本文将详细记录解决“White检验检验 python”问题的过程,包括背景描述、技术原理、架构解析、源码分析、性能优化和案例分析。 ### 背景描述 在20
原创 6月前
199阅读
显著性检验是用于检测科学实验中实验组与对照组之间是否有差异以及差异是否显著的办法。所谓统计假设检验就是事先对总体(随机变量)的参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设是否合理。而把只限定第一类错误概率的统计假设检验就称之为显著性检验。 显著性检验可以分为参数检验和非参数检验。参数检验要求样本来源于正态总体(服从正态分布),且这些正态总体拥有相同的方差,在这样的基本假定(正态性
申明:以下内容为笔者翻译自国际会议论文,鉴于本人水平有限,翻译难免有误,请大家多多包容。原文为:An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection; 
转载 2024-04-22 20:55:10
28阅读
图片工具检查图片是否损坏日常工作中,时常会需要用到图片,有时候图片在下载、解压过程中会损坏,而如果一张一张点击来检查就太不Cool了,因此我想大家都需要一个检查脚本;测试图片,0.jpg是正常的,broke.jpg是手动删掉一点内容后异常的:脚本运行结果:代码如下:# 从本地判断图片是否损坏 def is_valid_image(path): ''' 检查文件是否损坏 ''' try: bVali
因为写代码的缘故,经常会去看Stack Overflow网站,国内非程序员同学可能对这个网站比较陌生,但在英文世界里,这可是最大的IT技术问答网站,有最权威、最及时、最丰富的技术问题Q&A。 所谓“编程不识Stack Overflow,纵称程序员也枉然”,Stack Overflow也算是国内程序员最常逛的网站之一,为什么这么受欢迎呢?我觉得有5点:1、Stack Overflow是英文
导入相关库:导入数据为了开始执行离群值测试,我们将导入一些每10分钟采样的平均风速数据说明:在任何数据集中, outlier都是与其他数据点不一致的基准点。 如果从特定分布采样的数据具有高概率,则异常值将不属于该分布。 如果特定点是异常值,则有各种测试用于测试,这是通过常态测试中使用的相同的空假设测试来完成的。Q测试Dixon的Q-Test用于帮助确定是否有证据表明某个点是一维数据集的异常值。 假
转载 2023-07-27 12:11:56
127阅读
我们前面讲了异方差,也讲了怎么用图示法来判断是否有异方差,这一篇来讲讲怎么用统计的方法来判断有没有异方差。关于检验异方差的统计方法有很多,我们这一节只讲比较普遍且比较常用的white test(怀特检验)。假设现在我们做了如下的回归方程:如果要用怀特检验检验上述方程有没有异方差,主要分以下几个步骤:1.step1:对方程进行普通的ols估计,可以得到方程的残差ui。2.step2:以第一步估计估计
t 检验是一种统计技术,可以告诉人们两组数据之间的差异有多显著。它通过将信号量(通过样本或总体平均值之间的差异测量)与这些样本中的噪声量(或变化)进行比较来实现。有许多有用的文章会告诉你什么是 t 检验以及它是如何工作的,但没有太多材料讨论 t 检验的不同变体以及何时使用它们。本文将介绍 t 检验的 3 种变体以及何时使用它们以及如何在 Python 中运行它们。单样本 t 检验单样本 t 检验
统计性检验本文分为四个部分:正态性检验相关性检验参数统计假设检验非参数统计假设检验 1.正态性检验本部分列出了可用于检查数据是否具有高斯分布的统计检验。w检验(Shapiro-wilk test)检验数据样本是否具有高斯分布。from scipy.stats import shapiro data = [21,12,12,23,19,13,20,17,14,19] stat,p = sh
转载 2023-10-07 16:46:30
176阅读
【导读】在之前的《数据挖掘概念与技术 第2章》的文章中我们介绍了Q-Q图的概念,并且通过调用现成的python函数, 画出了Q-Q图, 验证了Q-Q图的两个主要作用,1. 检验一列数据是否符合正态分布 2. 检验两列数据是否符合同一分布。本篇文章将更加全面的为大家介绍QQ图的原理以及自己手写函数实现画图过程Q-Q图是什么QQ图是quantile-quantile(分位数-分位数图) 的简称,上面也
基于Fisher准则的线性分类器设计已知有两类数据和二者的先验概率,已知P(w1)=0.6,P(w2)=0.4。 W1和W2类数据点的对应坐标分别为: x1=0.23 1.52 0.65 0.77 1.05 1.19 0.29 0.25 0.66 0.56 0.90 0.13 -0.54 0.94 - 0.21 0.05 -0.08 0.73 0.33 1.06 -0.02 0.11 0.31 0
# 使用 Python 实现高斯过程回归 ## 1. 总体流程概述 对于初学者来说,实现高斯过程的步骤可以分为以下几个主要部分。下面的表格列出了我们将要实现高斯过程回归的主要步骤: | 步骤 | 说明 | |--------------------|--------------
原创 8月前
61阅读
图 | 源网络 文 | 5号程序员 数据假设检验是数理统计学中根据一定假设条件由样本推断总体的一种方法。那我们啥时候会用到假设检验呢?大多数情况下,我们无法分辨事物的真伪或者某种说法是否正确,这时就需要进行假设,然后对我们的假设进行检验。比如,我们想知道被告人是不是有罪,就可以通过假设检验进行判断。基本思路包括4步逻辑:问题是什么?→证据是什么?→
  • 1
  • 2
  • 3
  • 4
  • 5