数据量不断增加,企业需要灵活快速地处理这些数据。处理器主频和散热遇到瓶颈,多核处理器成为主流,并行化计算应用不断增加。开源软件的成功使得大数据技术得以兴起。互联网技术的发展让大多数企业能够积累大量的数据,而企业需要灵活快速地从这些数据中提取出有价值的信息来服务用户或帮助企业自身决策。然而处理器的主频和散热遇到了瓶颈,CPU难以通过纵向优化来提升性能,所以多核这种横向扩展成为了主流。也因此,开发者需
转载
2021-03-29 22:14:04
235阅读
背景数据量不断增加,企业需要灵活快速地处理这些数据。处理器主频和散热遇到瓶颈,多核处理器成为主流,并行化计算应用不断增加。开源软件的成功使得大数据技术得以兴起。互联网技术的发展让大多数企...
转载
2021-06-11 09:31:26
408阅读
# 大数据平台主流技术架构
随着互联网的迅猛发展,数据量呈指数级增长。大数据技术应运而生,旨在解决数据存储、处理和分析的各种挑战。在这些技术中,主流架构通常包括数据采集、存储、处理和可视化四个部分。本文将具体阐述大数据平台的主要技术架构,并提供代码示例。
## 1. 数据采集
数据采集是大数据平台的第一步,通常使用工具如 **Apache Nifi** 或 **Kafka**。这些工具能够实
原创
2024-10-07 03:16:09
147阅读
背景
数据量不断增加,企业需要灵活快速地处理这些数据。
处理器主频和
转载
2022-06-16 15:53:24
519阅读
MapReduce编程模型的提出为大数据分析和处理开创了一条先河,其后涌现出一批知名的开源大数据技术。
原创
2022-12-09 21:30:30
1541阅读
点赞
现实世界的数据常常是不完全的、有噪声的、不一致的。数据清洗过程包括遗漏数据处理,噪声数据处理,以及不一致数据处理。本节介绍数据清洗的主要处理方法。遗漏数据处理假设在分析一个商场销售数据时,发现有多个记录中的属性值为空,如顾客的收入属性,则对于为空的属性值,可以采用以下方法进行遗漏数据处理。1)忽略该条记录若一条记录中有属性值被遗漏了,则将此条记录排除,尤其是没有类别属性值而又要进行分类数据挖掘时。
转载
2024-08-27 16:04:35
133阅读
一.业务分析此次案例中,我们面临的业务需求时,有一张mysql表里存储了千万级别的数据,每次业务流程结束,这张表中就会增加至少8万条数据,而我们的系统要做的就是把这些数据按不同的需求统计展示,在代码中有大量的复杂计算和复杂sql语句,,并且该系统的业务会经常发生变化,这让整个系统变得缓慢和难以维护,即使在使用redis作为我们的缓冲层,也无法很好的解决查询效率问题,毕竟第一次加载真的太慢了,在面临
转载
2024-06-06 11:25:35
30阅读
大数据分析--淘宝美食产品数据分析一、选题背景随着网络技术的不断发展,大数据技术影响着人们生活的方方面面,人们可以利用大数据技术从海量的数据中提取有价值的信息。并且现在是一个信息爆炸的时代,我们可以通过电商购物平台网站购买商品,所以说电商平台对商品信息传播的作用不可忽视。各大电商平台商品评论中携带大量信息,如果浏览大量评论会浪费很多时间,所以对评论文本关键信息整合变得尤为重要。为了选择出自己喜欢的
转载
2023-07-17 19:51:45
212阅读
# 数据仓库主流技术科普文章
数据仓库(DW, Data Warehouse)是用于存储大量数据的系统,旨在为分析和报告提供支持。随着大数据时代的到来,数据仓库技术也在不断演进,以满足企业对于数据处理、存储和分析的需求。本文将介绍数据仓库主流技术,包括星型模式、雪花模式及数据抽取、转换和加载(ETL)过程,并提供Python代码示例。
## 一、数据仓库架构
数据仓库的架构通常分为三层:数据
# 如何实现主流数据仓库技术
## 流程概述
下面是实现主流数据仓库技术的流程:
| 步骤 | 操作 |
| --- | --- |
| 1 | 安装数据库 |
| 2 | 创建数据库表 |
| 3 | 导入数据 |
| 4 | 执行查询 |
## 具体步骤
### 1. 安装数据库
首先,你需要安装一个主流的关系型数据库,比如MySQL。安装完成后,启动数据库服务。
### 2.
原创
2024-03-06 03:32:03
26阅读
架构挑战1、对现有数据库管理技术的挑战。2、经典数据库技术并没有考虑数据的多类别(variety)、SQL(结构化数据查询语言),在设计的一开始是没有考虑到非结构化数据的存储问题。3、实时性技术的挑战:一般而言,传统数据仓库系统,BI应用,对处理时间的要求并不高。因此这类应用通过建模,运行1-2天获得结果依然没什么问题。但实时处理的要求,是区别大数据应用和传统数据仓库技术、BI技术的关键差别之一。
转载
2024-05-21 07:24:59
90阅读
大数据分析是现在十分火热的话题,从农业到工业、从金融到体育、从传统企业到初创公司,各行各业都在积极应用大数据分析,似乎你的企业不和大数据沾点边就会显得没有逼格一样。随着大数据分析的持续走红,大数据分析工具也呈现出了遍地开花的态势,我们今天要说的Hadoop就是其中之一。Hadoop是Apache开发的一个开源项目,短短几年的时间,我们就见证了Hadoop从无到有、从简陋到稳定的转变。目前Hadoo
转载
2023-07-24 09:19:04
51阅读
废话不多说先上图 大数据开发常见框架数据传输组件:①Kafka是用Scala编写的分布式消息处理平台。②Logstash是用JRuby编写的一种分布式日志收集框架。③Flume是用Java编写的分布式实时日志收集框架。数据存储组件:HDFS (Hadoop Distributed File System)用Java编写,是谷歌的GFS(Google File S ystem)的一种
转载
2023-07-20 21:08:44
893阅读
大数据概述: 大数据的发展历程:第一阶段:萌芽期(20世纪90年代至21世纪初) 第二阶段:成熟期(21世纪前十年) 第三阶段:大规模应用期(2010年以后) 大数据的特点(简称4V):数据量大 数据类型多 处理速度快 价值密度低 大数据的特征:全面而非抽样 效率而非精确 相关而非因果 在科学研究上的四种范式: 实验科学、理论科学、计算科学、数据密集型科学大数据技术 主要包括数据采集与预处理、数据
转载
2023-11-16 09:55:28
135阅读
看过来!!!2017年,大数据已经从概念走向落地;2019年,中低端IT工程师紧随浪潮加速向大数据转型,企业对大数据人才争夺直接进入白热化阶段。因此,对于想学IT技术的、想月入过万不是梦的人而言,我建议,直接选择学习大数据技术是符合潮流和就业需求的选择。一、大数据是什么?1、大数据简介一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的
转载
2024-05-08 10:47:21
192阅读
随着互联网的不断发展,越来越多的企业和用户都开始接触和学习大数据技术,它与机器学习、人工智能、区块链、物联网和增强现实等其他技术密切相关。因此,许多行业已经在大数据分析技术方面作了投入,比如银行、离散制造和流程制造等行业。 目前比较常见的一些大数据技术都有哪些类型?今天我们就一起来了解一下,目前比较常见的一些大数据技术都有哪些类型。 1.数据湖 数据湖
转载
2024-05-12 16:56:48
138阅读
2018年注定是大数据的时代,很多企业都纷纷向数据转型,对于大数据技术人才也是求贤若渴。对于大数据工程师岗位,我们需要掌握哪些技术才能胜任?今天给大家分享的是大数据工程师的技能树,让你对大数据工程师有一个基本的了解。1. 什么是大数据工程师数据工程师这个概念其实很模糊,不同的人和公司对它赋予的含义也区别很大,在这里,我们大概聊一下一般意义上的大数据工程师在工作中会做什么?集群运维:安装、测试、运维
转载
2024-07-30 13:47:42
71阅读
8 大数据技术8.1 大数据及其特征典型大数据应用中的数据在如下的一个或多个(4V)方面与传统技术面对的数据表现出显著不同:数据量(Volume)大、类型(Variety)多样、速度(Velocity)快、价值(Value)高而密度稀疏。大数据技术的目标乃是简单、高效并安全地共享大数据,支持大数据应用。大数据技术的关键需求包括:①可伸缩性,能够有效处理越来越多的数据和越来越多的访问。②可靠性,能够
转载
2023-08-31 15:13:16
224阅读
大数据生态系统不断涌现,新技术迅速出现,其中许多根据IT行业的需求而扩展。这些技术可确保协调工作,通过这些工具和技术,大数据可以实现飞跃式发展。什么是大数据技术?首先,需要了解什么是大数据,其实大数据是一种特定的描述,用于描述庞大的数据集合,这些数据的规模巨大,并且随着时间呈指数增长。它只是指定了难以使用常规管理工具进行存储,查询和转换的大量数据。实际上,大数据技术是一种结合了数据挖掘,数据存储,
转载
2024-02-26 21:55:34
83阅读
前言:学习了好久了,也没有系统的整理过这些东西,感觉再这么下去算是荒废了,懒惰加上不
原创
2023-02-19 09:09:26
183阅读