8 大数据技术8.1 大数据及其特征典型大数据应用中的数据在如下的一个或多个(4V)方面与传统技术面对的数据表现出显著不同:数据量(Volume)大、类型(Variety)多样、速度(Velocity)快、价值(Value)高而密度稀疏。大数据技术的目标乃是简单、高效并安全地共享大数据,支持大数据应用。大数据技术的关键需求包括:①可伸缩性,能够有效处理越来越多的数据和越来越多的访问。②可靠性,能够
大数据就业十大方向       大数据行业前景广阔,岗位多,人工智能时代大数据人才缺口巨大! 目前,互联网、物联网、人工智能、金融、体育、在线教育、交通、物流、电商等等,几乎所有的行业都已经涉足大数据大数据将成为今后整个社会及企业运营的支撑。    大数据技术是一种新一代技术和构架,它以成本较低、以快速的采集、处理和分析技
我们先来看看这张图,这是某公司使用的大数据平台架构图,大部分公司应该都差不多:从这张大数据的整体架构图上看来,大数据的核心层应该是:数据采集层、数据存储与分析层、数据共享层、数据应用层,可能叫法有所不同,本质上的角色都大同小异。所以我下面就按这张架构图上的线索,慢慢来剖析一下,大数据的核心技术都包括什么。一、数据采集数据采集的任务就是把数据从各种数据源中采集和存储到数据存储上,期间有可能会做一些简
大数据的相关岗位当中,大数据挖掘在这两年可以说是得到了极大的重视,数据挖掘岗位的薪资也可以说是高出同等级其他岗位不少,很多人因此将大数据挖掘作为一个转行的选择。今天我们从大数据挖掘应用培训的角度,来分享一下大数据挖掘原理及技术解析。大数据挖掘,需要大数据技术框架的支持,早期的Hadoop MapReduce框架,是解决大数据挖掘问题的第一代框架,而随着数据处理需求的变化,紧随其后又出现了很多的
DATABASE TECHNOLOGY CONFERENCE CHINA 中国数据技术大会 而现在DTCC绝
原创 9月前
68阅读
前言:学习了好久了,也没有系统的整理过这些东西,感觉再这么下去算是荒废了,懒惰加上不
数据库时代要说大数据的真正起源,必须得提到数据库。无论是移动互联网还是PC因特网,或者是计算机本身,背后都是一群又一群程序员写的程序,而一切程序说到底都还是对数据的处理。如果把数据处理比作一个王国的话,那这个王国的国王就是数据库。那什么是数据库呢?用最简单的话来说,就是一个用户可以把数据存储在数据库,需要的时候,用户可以告诉数据库,我需要某些数据,然后数据库会自行完成实际的数据处理过程,返回数据
原创 2021-09-28 21:15:15
10000+阅读
15点赞
2评论
目录1 大数据概念2 大数据特点(4V)3 大数据应用场景4 大数据发展前景5 大数据部门间业务流程分析6 大数据部门内组织结构1 大数据概念大数据概念大数据(Big Data):指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。按顺序给出数据存储单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。 1Byte = 8bit 1K = 10
原创 2021-03-25 17:46:20
10000+阅读
目录(一)通用框架概述(二)数据收集层(三)数据存储层(四)资源管理与服务协调层(五)计算引擎层(六)数据分析层(七)数据可视化层 (一)通用框架概述自底向上,与OSI类似,通用框架下的大数据体系有七层:数据源、数据收集层、数据存储层、资源管理与服务协调层、计算引擎层、数据分析层及数据可视化层。图示如下: (二)数据收集层 数据收集层直接与数据源对接,负责采集产品使用
大数据核心3个概念:能伸缩到一千台以上的分布式数据处理集群技术这上千个节点是使用廉价PC搭建将数据中心当做一台计算机大数据的起源:“三架马车”这三篇论文还依赖了两个基础设施:Chubby锁服务,Thrift序列化MapReduce 演进路线:编程方式:最初的MapReduce需要工程师编写代码,Hive出现后使用类SQL语言降低了门槛,称为大数据仓库事实标准执行引擎:Dremel使用数据列存储+并
在讲新一代大数据技术架构前,先讲下大数据特征与大数据技术要解决的问题。1.大数据特征:“大量化(Volume)、多样化(Variety)、快速化(Velocity)、价值密度低(Value)”就是“大数据”显著的4V特征,或者说,只有具备这些特点的数据,才是大数据。2.大数据技术要解决的问题:大数据技术被设计用于在成本可承受的条件下,通过非常快速(velocity)地采集、发现和分析,从大量(vo
随着科技的发展和社会的进步,大数据、人工智能等新兴技术开始进入了我们的生活。我们已经从信息时代跨入了大数据时代,而大数据是一个十分火热的技术,现如今大数据已经涉及到了各行各业的方方面面。但是目前而言,很多人对于大数据不是十分清楚,下面我们就给大家讲一讲大数据的架构知识。1.大数据架构的特点一般来说,大数据的架构是比较复杂的,大数据的应用开发过于偏向底层,具有学习难度大,涉及技术
在上一篇文章中我们给大家介绍了很多在金融行业中数据挖掘的案例,有关数据挖掘的案例实在是有很多。随着金融大数据特征在大数据时代的日益明显,监管上和业务上的需求也越来越复杂,无论是对科研界还是实业界都提出了新的要求和挑战。下面我们就给大家介绍一下更多的相关内容。首先就是客户评分,评分技术是银行业广泛使用的一项技术,包括风险评分、行为评分、收益率评分、征信局评分以及客户评分等。评分技术
随着多年的大数据技术发展和积累,越来越多的人发现各个公司所使用的大数据技术大致可以分为两大类,分别是离线处理技术和实时处理技术,要么个别公司只有离线处理技术,要么个别公司只有实时处理技术,但是绝大部分公司基本上都是两种技术架构都带着一起在做,以为我们的业务一、lamda架构基本介绍 1、业务系统基本流程介绍 2、lamda架构基本介绍  lamda架构最早是由storm的创始人,Nat
企业面临的挑战之一是:传递大数据。传递大数据受限制于IT基础设施,需要解决大数据的规模和动态性问题。与大数据有关的不同架构思想大数据技术和它的组件设计原则大数据的功能需求: 1. 采集数据 2. 组织数据 3. 集成数据 4. 分析数据 5. 按照分析结果执行操作其他需求: 1. 架构支持,强大的运算能力和速度也非常重要 2.支持海量数据的存储 3.也需要有适当的冗余,以防产生意外
云计算与大数据密切相关,大数据是计算密集型操作的对象,需要消耗巨大的存储空间,云计算的主要目标是在集中管理下使用巨大的计算和存储资源,用微粒度计算能力提供大数据应用,云计算的发展为大数据的存储和处理提供了解决方案,大数据的出现也加速了云计算的发展,基于云计算的分布式存储技术可以有效地管理大数据,借助云计算的并行计算能力可以提高大数据采集和分析的效率。研究机构Gartner定义∶大数据是需要新的处理
大数据的应用开发过于偏向底层,具有学习难度大,涉及技术面广的问题,这制约了大数据的普及。现在需要一种技术,把大数据开发中一些通用的,重复使用的基础代码、算法封装为类库,降低大数据的学习门槛,降低开发难度,提高大数据项目的开发效率。大数据在工作中的应用有三种:与业务相关,比如用户画像、风险控制等;与决策相关,数据科学的领域,了解统计学、算法,这是数据科学家的范畴;与工程相关,如何实施、如何实现、解决
大数据技术原理与应用大数据技术原理与应用第一章 大数据概述1、大数据的4v特征2、大数据的影响3、大数据的两大核心技术4、大数据计算模式及代表产品5、大数据与云计算、物联网的关系第二章 大数据处理架构Hadoop1、Hadoop的发展历史2、Hadoop的特性3、Hadoop1.0与Hadoop2.0的区别4、Hadoop生态系统5、Hadoop生态系统组件及功能6、core-site.xml和
大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。首先给出一个通用化的大数据处理框架,主要分为下面几个方面:数据采集与预处理、数据存储、数据清洗、数据查询分析和数据可视化。一、数据采集与预处理对于各种来源的数据,包括移动互联网数据、社交网络的数据等,这些结构化和非结构化的海量数据是零散
  • 1
  • 2
  • 3
  • 4
  • 5