变阶马尔科夫链模型是一种动态建模工具,广泛应用于预测和分析系统状态演变的场景中。在许多实际问题中,状态之间的转移不是固定的,而是随着系统的历史和环境变化而变化,变阶马尔科夫链模型非常适合这类问题。
### 背景定位
近年来,随着机器学习和数据分析技术的发展,变阶马尔科夫链的研究逐渐受到关注。此模型在很多应用场景中能够有效地捕捉时间序列数据中的复杂关系,提供更准确的预测能力。
时间轴展示了变阶
我们被要求在本周提供一个报告,该报告将统计,优化等数值方法与金融结合在一起。分析师通常关心检测市场何时“发生变化”:几个月或几年内市场的典型行为可以立即转变为非常不同的行为。投资者希望及时发现这些变化,以便可以相应地调整其策略,但是这样做可能很困难。让我们考虑一个简化的示例。牛市可以被定义股票市场普遍看涨且持续时间较长的市场。熊市对应于指延续时间相对较长的大跌并且有相对较高的波动性。我们可以使用随
转载
2023-11-10 05:55:08
6阅读
1.马尔可夫链(Markov Chain) 马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫(A.A.Markov)得名。描述的是状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆
转载
2024-04-07 13:30:41
183阅读
机器学习入门:隐马尔科夫模型1、实验描述本实验先简单介绍隐马尔科夫模型,然后提供一份股票交易的数据,通过建立隐马尔科夫模型对股票数据进行分析,并将最终结果用图的方式展示出来。实验时长:45分钟主要步骤:读取数据文件数据预处理模型创建模型的预测模型评估绘制相关的指标2、实验环境虚拟机数量:1系统版本:CentOS 7.5scikit-learn版本: 0.19.2numpy版本:1.15.1matp
马尔可夫链,因俄罗斯数学家安德烈·马尔可夫(俄语:Андрей Андреевич Марков)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,只有当前的状态用来预测将来,过去(即当前以前的历史状态)对于预测将来(即当前以后的未来状态)是无关的。 在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。状态的改变叫做过
若每年要统计一个城市极其郊区人口,像,可以显示60%住城市,40%住郊区,加起来是1;具有这种特性的向量称为:概率向量;随机矩阵是各列都是这样的向量组成的方阵;马尔科夫链是一个概率向量序列,和一个随机矩阵P()例1:城市与郊区之间移动模型/随机矩阵: 即每年有5%的城市人口流到郊区,3%的郊区人口留到城市;假设此城市2000年城市人口600000,郊区400000,则2001年人口:例2
转载
2023-05-18 11:29:17
189阅读
初识马尔科夫模型(Markov Model)一、概念二、性质三、学习步骤 一、概念马尔科夫模型(Markov Model)是一种概率模型,用于描述随机系统中随时间变化的概率分布。马尔科夫模型基于马尔科夫假设,即当前状态只与其前一个状态相关,与其他状态无关。二、性质马尔科夫模型具有如下几个性质:① 马尔科夫性:即马尔科夫模型的下一个状态只与当前状态有关,与历史状态无关。② 归一性:所有的状态转移概
转载
2023-08-14 12:28:26
161阅读
前言 马尔科夫链在RBM的训练中占据重要地位,因为它提供了从复杂的概率分布(比如马尔科夫随机场MRF的吉布斯分布)中提取样本。这一部分主要就是对马尔科夫链做个基本的理论介绍,将要着重强调的是,将吉布斯采样作为一种马尔科夫链蒙特卡洛方法去训练马尔科夫随机场以及训练RBM。马尔科夫链一个马尔科夫链是离散时间的随机过程,系统的下一个状态仅仅依赖当前的所处状态,与在它之前发生的事情无关。形式上,一个马尔科
转载
2024-03-11 15:14:24
121阅读
重新把《编程珠玑》读了一遍,以前并没有仔细研究最后一章的生成随机文本,昨天仔细读了一下,感悟颇深,想记录一下自己的感悟,顺便理清一下思路。 言归正传,要通过读取一个文档来生成一个随机的文档,作者使用的方法是根据k连单词的后一个单词的出现概率来选取下一个单词。作者在书中用的方法是读取之后,对数组进行排序,那么前k个单词相同的子串一定是相邻的,然后通过二分查找,找
转载
2023-11-01 15:21:59
131阅读
概念:则称为马尔可夫过程。定理1:独立过程是马尔可夫过程。定理2:若独立增量过程满足初始分布,则为马尔可夫过程。马氏过程的有限维分布由一维分布和条件分布完全确定。 离散参数马氏链:转移矩阵是随机矩阵,其行向量都是概率向量。k步转移概率:C-K方程: 齐次马氏链:一步转移概率与初始时刻无关绝对分布:初始分布:绝对分布由初始分布和一步转移概率确定:遍历性:对一切i,j,存在常数,使
转载
2023-10-31 22:42:08
235阅读
基于隐马尔可夫模型预测算法的无人车行为预测 无人车的行为预测问题一直都是无人车研究的一个重要问题,因为只有在无人车可以对周围环境以及交通参与者有了很好的理解和预测的基础上,在能保证无人车可以安全的在道路上行驶。但是在实际道路中,交通情况有是十分复杂的,我们无法对道路上的每个交通参与者的行为做出完全准确地预测,所以预测问题最终归结为概率问题。 1、隐马尔可夫模型 在介绍隐马尔科夫模型之前,为了读者更
转载
2023-08-24 14:28:40
3阅读
Markov chain -- 马尔科夫链【定义】在机器学习算法中,马尔可夫链(Markov chain)是个很重要的概念。马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决
转载
2023-12-19 14:56:09
57阅读
目录0. 前言0.1 马尔可夫性0.2 马尔科夫链0.3 马尔科夫链有什么用?1. 离散时间马尔科夫链(DTMC)2. 马尔科夫链建模2.1 转移概率矩阵2.2 有向图表示2.3 一个实例2.4 矩阵运算例3. 马尔科夫链蒙特卡洛仿真3.1 Python modelling3.2 The first trial3.3 蒙特卡洛仿真0. 前言0.1 马尔可夫性 &n
转载
2023-10-24 10:42:36
236阅读
说明Baum-Welch 也是马氏三问之一,是模型学习的方法。内容还是使用上一篇的例子,黑箱摸球。BW通过前后向算法来进行参数学习的,具体的算法先不去看,先看看怎么用。 下面是一个模型拟合的过程MultinomialHMM# Baum-Welch
import numpy as np
from hmmlearn import hmm
states = ['box1','box2','box3']
转载
2024-06-10 15:04:38
164阅读
目录MCMC(一)蒙特卡罗方法MCMC(二)马尔科夫链MCMC(三)MCMC采样和M-H采样 MCMC(四)Gibbs采样 Python 2.7 版本:import numpy as np
matrix = np.matrix([[0.9,0.075,0.025],[0.15,0.8,0.05],[
转载
2023-11-06 14:00:49
93阅读
为了预测天气,假设观察多次后,得到天气变化的概率存在如下转换: 第一天|第二天|概率 : :|: :|: : 晴天
原创
2022-08-10 17:42:22
379阅读
什么是马尔可夫链一句话描述:状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备无记忆的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。也就是说,马尔可夫链是一个随机系统,它必须满足两个条件:系统任意时刻可以用有限个可能状态之一来描述系统无后效性,即某阶段的状态一旦确定,则此后过程的演变不再受此前各种状态及决策的影响在马尔可夫链的每一步,系统根据概率
转载
2023-12-15 14:26:39
291阅读
1. 综述已知问题规模为n的前提A,求解一个未知解B。(我们用An表示“问题规模为n的已知条件”)此时,如果把问题规模降到0,即已知A0,可以得到A0->B.如果从A0添加一个元素,得到A1的变化过程。即A0->A1; 进而有A1->A2; A2->A3; …… ; Ai->Ai+1. 这就是严格的归纳推理,也就是我们经常使用的数学归纳法;对于Ai+1,只需要它的上一
转载
2024-01-21 06:42:10
55阅读
前言我们通常使用股市的一手数据来创建一个策略模型,预测下一时刻价格的多少、走势的判断或其他。 今天,我们想结合多样的市场条件(波动性,交易量,价格变化等等)和结合隐马尔科夫(HMM)来构建我们的交易策略。HMM是一个统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。我们的观测数据就是的市场特征,隐藏状态是市场的行为。我们的目标是解释建模后的隐藏状态,并基于此建立交易策略。特征工程与
转载
2023-10-18 17:47:44
62阅读
用Python中的马尔科夫链模拟文本在我的上一篇文章中,我在马尔科夫链蒙特卡洛方法的背景下介绍了马尔科夫链。这篇文章是那篇文章的一个小补充,展示了你可以用马尔科夫链做的一件有趣的事情:模拟文本。 马尔科夫链是一个模拟的事件序列。序列中的每个事件都来自一组相互依赖的结果。特别是,每个结果都决定了哪些结果可能会在接下来发生。在马尔科夫链中,预测下一个事件所需的所有信息都包含在最近的事件中。这意味着,
转载
2023-12-07 08:41:11
62阅读