1. 朴素是什么  依据《统计学方法》上介绍:朴素(Naive Bayes)是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对给定的输入 xx ,利用贝叶斯定理求出后验概率最大的输出 yy 。  可能读完上面这段话仍旧没办法理解朴素到底是什么,又是
算法定义方法是以原理为基础,使用概率统计的知识对样本数据集进行分类。由于其有着坚实的数学基础,分类算法的误判率是很低的。方法的特点是结合先验概率和后验概率,即避免了只使用先验概率的主管偏见,也避免了单独使用样本信息的过拟合现象。分类算法在数据集较大的情况下表现出较高的准确率,同时算法本身也比较简单。朴素算法(Naive Bayesian algorithm
目录1 朴素的算法原理2 一维特征变量下的模型3 二维特征变量下的模型4 n维特征变量下的模型5 朴素模型的sklearn实现6 案例:肿瘤预测模型6.1 读取数据与划分6.1.1 读取数据6.1.2 划分特征变量和目标变量6.2 模型的搭建与使用6.2.1 划分训练集和测试集6
编辑导语:做过数据分析的人,想必对模型都不会陌生。预测模型是运用统计进行的一种预测,不同于一般的统计方法,其不仅利用模型信息和数据信息,而且充分利用先验信息。通过实证分析的方法,将预测模型与普通回归预测模型的预测结果进行比较,结果表明预测模型具有明显的优越性。 说到模型,就算是不搞数据分析的都会有所耳闻,因为它的应用范围实在是太广泛了。大数据、机器学习、数据挖
基于R语言的网络模型实践技术应用网络不但能够统合已有的各种统计学方法,如混合回归模型,LASSO,自回归模型,隐马模型等等;而且在很大程度上能够弥补统计学模型不能够进行因果推断的缺憾。以开源的R语言为平台,通过理论和实践相结合的方法,系统介绍了网络结构学习,参数学习以及因果推断等全过程,对网络有较全面的了解,并能够用于科研和工作实践中。/// 【教 程】基于R语言
One-Shot Learning with a Hierarchical Nonparametric Bayesian Model该篇文章通过分层模型学习利用单一训练样本来学习完成分类任务,模型通过影响一个类别的均值和方差,可以将已经学到的类别信息用到新的类别当中。模型能够发现如何组合一组类别,将其归属为一个有意义的父类。对一个对象进行分类需要知道在一个合适的特征空间中每一维度的均值和方差
今天这篇文章和大家聊聊朴素模型,这是机器学习领域非常经典的模型之一,而且非常简单,适合初学者入门。朴素模型,顾名思义和贝叶斯定理肯定高度相关。之前我们在三扇门游戏的文章当中介绍过贝叶斯定理,我们先来简单回顾一下公式: 我们把P(A)和P(B)当做先验概率,那么公式就是通过先验和条件概率推算后验概率的公式。也就是寻果溯因,我们根据已经发生的事件去探究导致事件发生的
背景​​​​模型提供了变量选择技术,确保变量选择的可靠性。对社会经济因素如何影响收入和工资的研究为应用这些技术提供了充分的机会,同时也为从性别歧视到高等教育的好处等主题提供了洞察力。下面,信息准则(BIC)和模型平均被应用于构建一个简明的收入预测模型。 这些数据是从 935 名受访者的随机样本中收集的。该数据集是计量经济学数据集系列的一部分 。加载包数据将首先使用该​
原创 2022-11-10 11:33:41
135阅读
  随机对照试验是发现因果关系的黄金准则,然而现实世界中很多问题往往由于道德伦理的原因不允许我们设置干预进行试验,这就引发了在观测数据上学习因果关系的需求。网络是概率论与图论相结合的产物,它用图论的方式直观地表达各变量之间的因果关系,为多个变量之间的复杂依赖关系提供了紧凑有效、简洁直观的统一框架,是表示因果关系的常用工具。当前网络因果图结构学习方法主要分为基于约束的方法、基于评分的方法
原创 2021-11-04 14:32:02
9424阅读
原创 2021-11-04 14:32:54
10000+阅读
方法有着非常广泛的应用,但是初学者容易被里面的概率公式的给吓到,以至于望而却步。所以有大师专门写个tutorial,命名为“bayesian inference with tears”。 我本人也深受其苦,多次尝试学习而不得其门而入。终于有一天,一种醍醐灌顶的感觉在脑海中出现,思路一下子清晰了,原来bayes估计竟然是这么一回事。本blog只是为了让还处在痛苦的学习过程中的人能够快速把握概念
转载 2024-01-05 22:08:00
70阅读
模型思想该分类器的实现思想⾮常简单,即通过已知类别的训练数据集,计算样本的先验概率,然后利⽤⻉概率公式测算未知类别样本属于某个类别的后验概率,最终以最⼤后验概率所对应的类别作为样本的预测值。先验概率先验概率:指根据以往经验和分析得到的概率,如全概率公式,它往往作为"由因求果"问题中的"因"出现的概率。后验概率后验概率:是信息理论的基本概念之一。在一个通信系统中,在收到某个消息之后,接收端所了解
贝叶斯定理贝叶斯定理是关于随机事件A和B的条件概率和边缘概率的一则定理。在参数估计中可以写成下面这样: 这个公式也称为逆概率公式,可以将后验概率转化为基于似然函数和先验概率的计算表达式,即在贝叶斯定理中,每个名词都有约定俗成的名称:P(A)是A的先验概率或边缘概率。之所以称为"先验"是因为它不考虑任何B方面的因素。P(A|B)是已知B发生后A的条件概率(在B发生的情况下A发生的可能性),
最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两种方法的思路,很容易弄混它们。下文将详细说明MLE和MAP的思路与区别。但别急,我们先从概率和统计的区别讲起。概率 与 统计 的区别概率(probabilty)和统计(st
本节内容:       1、混合高斯模型;文本聚类)       3、结合EM算法,讨论因子分析算法;       4、高斯分布的有用性质。 混合高斯模型将一般化的EM算法流程(下载笔记)应用到混合高斯模型因子
一、贝叶斯定理机器学习所要实现的均是通过有限的训练样本尽可能的准确估计出后验概率,也就是所说的结果情况。大题分为判别式模型和生成式模型。1. 判别式模型:直接通过建模P(结果|特征)的方式来预测结果,典型代表如决策树,BP神经网络、支持向量机等。2. 生成式模型:先对联合概率分布P(特征,结果)进行建模,然后通过下面的公式得到P(结果|特征),就是通过这种方法来解决问题。当然的本质公式
这一节主要讲一元线性回归模型问题:利用给定的数据建立 y 与 x 之间的线性模型 1. 构造出数据集先导入相应的一系列库%matplotlib inline import pymc3 as pm import numpy as np import pandas as pd import scipy.stats as stats import matplotlib.pyplot as plt imp
目录一。朴素的假设 二。朴素的推导 三。高斯朴素Gaussian Naive Bayes四。多项分布朴素Multinomial Naive Bayes 五。以文本分类为例 1.分析 2.分解3.拉普拉平滑 4.对朴素的思考六。总结七。word2vec 八。GaussianNB, Multinomi
    使用贝叶斯定理,目前来看最重要的一点在于假设。就是未知事件已知化,同时也要注意假设的全程性,不能从中开始新的假设,这种假设往往是不全面的。    我自己找到的假设的方法有两种,一种是命名,一种是时序。全程性就体现在时序上了,假设考虑的范围要从第一条相关条件开始。    举3个原书的例子:     例子
转载 2024-01-16 14:38:50
106阅读
  • 1
  • 2
  • 3
  • 4
  • 5