注:本算法的实现仅仅适用于小规模数据集的实验与测试,不适合用于工程应用算法假定训练数据各属性列的值均是离散类型的。若是非离散类型的数据,需要首先进行数据的预处理,将非离散型的数据离散化。算法中使用到了DecimalCaculate类,该类是java中BigDecimal类的扩展,用于高精度浮点数的运算。该类的实现同本人转载的一篇博文:对BigDecimal常用方法的归类中的Arith类相同。算法实
转载
2023-12-08 09:47:03
83阅读
1. 朴素贝叶斯是什么 依据《统计学方法》上介绍:朴素贝叶斯法(Naive Bayes)是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对给定的输入 xx ,利用贝叶斯定理求出后验概率最大的输出 yy 。 可能读完上面这段话仍旧没办法理解朴素贝叶斯法到底是什么,又是
转载
2023-10-02 08:15:49
165阅读
今天这篇文章和大家聊聊朴素贝叶斯模型,这是机器学习领域非常经典的模型之一,而且非常简单,适合初学者入门。朴素贝叶斯模型,顾名思义和贝叶斯定理肯定高度相关。之前我们在三扇门游戏的文章当中介绍过贝叶斯定理,我们先来简单回顾一下贝叶斯公式: 我们把P(A)和P(B)当做先验概率,那么贝叶斯公式就是通过先验和条件概率推算后验概率的公式。也就是寻果溯因,我们根据已经发生的事件去探究导致事件发生的
转载
2024-03-07 19:32:47
91阅读
编辑导语:做过数据分析的人,想必对贝叶斯模型都不会陌生。贝叶斯预测模型是运用贝叶斯统计进行的一种预测,不同于一般的统计方法,其不仅利用模型信息和数据信息,而且充分利用先验信息。通过实证分析的方法,将贝叶斯预测模型与普通回归预测模型的预测结果进行比较,结果表明贝叶斯预测模型具有明显的优越性。 说到贝叶斯模型,就算是不搞数据分析的都会有所耳闻,因为它的应用范围实在是太广泛了。大数据、机器学习、数据挖
转载
2023-12-12 19:53:52
86阅读
算法java实现第一步对训练集进行预处理,分词并计算词频,得到存储训练集的特征集合/**
* 所有训练集分词特征集合
* 第一个String代表分类标签,也就是存储该类别训练集的文件名
* 第二个String代表某条训练集的路径,这里存储的是该条语料的绝对路径
* Map<String, Integer>存储的是该条训练集的特征词和
转载
2023-06-13 22:40:52
156阅读
# 贝叶斯模型简介及Java实现
贝叶斯模型是基于贝叶斯定理的一种统计模型,广泛应用于统计推断、机器学习和数据分析中。其核心思想是利用已有的数据来更新对某个事件的概率估计。本文将介绍贝叶斯模型的基本概念,并通过一个简单的Java实现来演示其应用。
## 贝叶斯定理
贝叶斯定理的公式如下:
\[
P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}
\]
其中,
一、什么是贝叶斯推断贝叶斯推断(Bayesian inference)是一种统计学方法,用来估计统计量的某种性质。它是贝叶斯定理(Bayes' theorem)的应用。英国数学家托马斯·贝叶斯(Thomas Bayes)在1763年发表的一篇论文中,首先提出了这个定理。贝叶斯推断与其他统计学推断方法截然不同。它建立在主观判断的基础上,也就是说,你可以不需要客观证据,先估计一个值,然后根据实际结果不
1、基本概念(原文地址)在机器学习中,朴素贝叶斯是一个分类模型,输出的预测值是离散值。在讲该模型之前首先有必要先了解贝叶斯定理,以该定理为基础的统计学派在统计学领域占据重要的地位,它是从观察者的角度出发,观察者所掌握的信息量左右了观察者对事件的认知。贝叶斯公式如下:其中,P(B∣A) 是事件 B 在另一个事件 A已经发生条件下的概率,∑AP(B∣A)P(A) 表示A所有可能情况下的概率,现在要来求
转载
2024-01-21 01:03:19
100阅读
One-Shot Learning with a Hierarchical Nonparametric Bayesian Model该篇文章通过分层贝叶斯模型学习利用单一训练样本来学习完成分类任务,模型通过影响一个类别的均值和方差,可以将已经学到的类别信息用到新的类别当中。模型能够发现如何组合一组类别,将其归属为一个有意义的父类。对一个对象进行分类需要知道在一个合适的特征空间中每一维度的均值和方差
转载
2023-12-20 13:42:55
354阅读
1.3、贝叶斯分类的基础——贝叶斯定理 每次提到贝叶斯定理,我心中的崇敬之情都油然而生,倒不是因为这个定理多高深,而是因为它特别有用。这个定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率: &n
转载
2023-12-28 15:57:00
112阅读
朴素贝叶斯(Naive Bayesian Mode,NBM)贝叶斯由来贝叶斯是由英国学者托马斯·贝叶斯 提出的一种纳推理的理论,后来发展为一种系统的统计推断方法。被称为贝叶斯方法。朴素贝叶斯朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。优点是在数据较少的情况下仍然有效,可以处理多类别的问题。缺点是对于输入数据的装备方式较为敏感。适用于标称型的数据。特征条件独立:假设 X 的 N 个特征
转载
2023-12-14 11:21:49
80阅读
朴素贝叶斯原理及实现理论概率相关知识介绍代码实现 本文参考自鲁东大学人工智能学院课程内容百度百科解释:朴素贝叶斯法(Naive Bayes model)是基于贝叶斯定理与特征条件独立假设的分类方法。 最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM)。和决策树模型相比,朴素贝叶斯分类器(Naive Bay
转载
2023-12-16 16:48:45
100阅读
贝叶斯模型在数据分析中一般用来解决先验概率、分类实时预测和推荐系统等问题,为了理解一下贝叶斯的概念,我们先来看一个例子:某零售企业有三家供货商,记为A1、A2、A3,其供应量和不合格率如下图所示,如果随机从该零售企业中抽取一个产品,其不合格的概率有多大呢?如果抽到的某个产品是不合格的,最有可能是来自于哪个供货商呢? 如果大家了解过概率论统计学的,应该可以看出来,上面的两个
转载
2023-12-15 11:42:30
41阅读
随机对照试验是发现因果关系的黄金准则,然而现实世界中很多问题往往由于道德伦理的原因不允许我们设置干预进行试验,这就引发了在观测数据上学习因果关系的需求。贝叶斯网络是概率论与图论相结合的产物,它用图论的方式直观地表达各变量之间的因果关系,为多个变量之间的复杂依赖关系提供了紧凑有效、简洁直观的统一框架,是表示因果关系的常用工具。当前贝叶斯网络因果图结构学习方法主要分为基于约束的方法、基于评分的方法
转载
2024-04-18 14:56:11
79阅读
1 概率图模型、贝叶斯网络与贝叶斯公式概率图模型概率图模型简单的说,就是用图来表示概率模型。它是一种通用化的不确定性知识表示和处理方法。在概率图模型的表达中,结点表示随机变量,结点之间直接相连的边表示随机变量之间的概率关系。贝叶斯网络贝叶斯网络是一种基于概率推理的数学模型,其理论基础是贝叶斯公式。一个贝叶斯网络就是一个有向无环图,结点表示随机变量,可以是可观测量、隐含变量、未知参量或假设等;结点之
机器学习(二)—朴素贝叶斯算法一、 贝叶斯定理1、准备知识 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。这个定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率:表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公
转载
2023-12-14 04:10:06
77阅读
零、前言:模型估计问题的总结模型分为确知模型与概率模型。确知模型的输出是一个确定的值,如:买x斤苹果,每斤苹果2元,总价值为y=2x;而概率模型输出的是自变量的概率,如:一个不均匀的四面体骰子,出现对应点数的概率和点数的大小相关,P(x)=y=0.1x。我们这里主要讨论概率模型在这里首先规定符号:假设是iid的一组抽样,并记作模型是对数据的描述,用一些参数和变量及它们的数学关系刻画,记作,其中X代
转载
2024-01-30 22:53:13
95阅读
朴素贝叶斯(naïve Bayes)法是基于贝叶斯定理与特征条件独立假设的分类方法[1]。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。朴素贝叶斯法实现简单,学习与预测的效率都很高,是一种常用的方法。4.2 朴素贝叶斯法的参数估计4.2.1 极大似然估计在朴素贝叶斯法中,学习意味着估计P(Y=ck
转载
2023-06-12 11:17:43
224阅读
贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称贝叶斯分类。而朴素贝叶斯分类是贝叶斯分类中最简单也是最常见的分类方法。 分类算法的内容是要求给定特征,让我们得出类别,这也是所有分类问题的关键。朴素贝叶斯分类朴素贝叶斯分类的核心算法: 换个表达形式即为: 我们最终求P(类别|特征)即可! 给定数据如下: 问题:如果一对男女朋友,男生向女生求婚,男生的四个特点是帅,性格好,高,上进
import numpy as npimport matplotlib.pyplot as pltfrom sklearn.datasets import load_irisfrom sklearn import treefrom sklearn.model_selection impo
原创
2022-11-10 14:18:03
261阅读