1. 前言极小化极大算法是基于决策树和搜索的智能系统中的典型算法,可用于指导井字棋、黑白棋、五子棋等经典完全信息零和博弈。虽在学生时代学习过极小化极大算法,但时过境迁,思量该算法的来龙去脉已然如雾里探花水中望月。近来自学人工智能算法,恰好又一次接触到了该算法,也算与其有缘,理应将其悉数记下。下文将以井字棋为例详细说明该算法原理。2. 博弈树2.1 井字棋井字棋(Tic-Tac-Toe)是由两个玩家
这是人工智能的一个方向,主要是在跟计算机在下棋,所以你应该从计算机的角度去思考问题,下面这篇文章是转载滴:这样策略本质上使用的是深度搜索策略,所以一般可以使用递归的方法来实现。在搜索过程中,对本方有利的搜索点上应该取极大值,而对本方不利的搜索点上应该取极小值。(主要是指计算机方)极小值和极大值都是相对而言的。在搜索过程中需要合理的控制搜索深度,搜索的深度越深,效率越低,但是一般来说,走法越好。极大
转载
2023-07-04 19:30:33
140阅读
极小极大的定义 Minimax算法 又名极小化极大算法,是一种找出失败的最大可能性中的最小值的算法(即最小化对手的最大得益)。通常以递归形式来实现。 Minimax算法常用于棋类等由两方较量的游戏和程序。该算法是一个零总和算法,即一方要在可选的选项中选择将其优势最大化的选择,另一方则选择令对手优势最小化的一个,其输赢的总和为0(有点像能量守恒,就像本身两个玩家都有1点,最后输家要将他的1点给赢家,
这次为大家带来数论中一个比较简单但是很重要的专题。极值定理:<1>极大极小值定理: 极大值:如果N个正数的和X1+X2+X3+…+XN=S(定值),那么当X1=X2=X3=…XN时,乘积Z1Z2Z3…ZN有最大值:(S/N)N。 极小值:如果N个正数的积X1X2X3…XN=K(定值),那么当X1=X2=X3=…XN时,和X1+X2+X3+…+XN有最小值:。<2>最小数
我们在上一篇文章中给大家讲解的杜邦分析法的指标关系说明,在这篇文章中我们给大家说一下杜邦分析法的分析思路。杜邦分析法需要从营业净利率、总资产周转率、权益乘数这几个方面考虑清楚,这样我们才能够真正掌握好杜邦分析法。首先给大家说一下杜邦分析法的结构,杜邦分析采用金字塔结构,把企业净资产收益率逐级分解为多项财务指标的比值或乘积,这样有助于我们深入分析企业的经营状况。我们从营业净利率说
主函数部分A=input("请输入准则层矩阵:\n");%A为因素层的成对比较矩阵yizhi=YiZhiXingJianYan(A)%%判断是否是一致性矩阵,CI存放了每个矩阵的CI值weight=TeZhengZhiWeight(A)%%求出来准则层各个因素的权重 存放在weight中[n,l]=size(A);B=cell(1,n); %用来存储每个因素下的成对比较矩阵RIAll = [0,0
转载
2023-07-04 19:54:51
0阅读
disp('请输入判断矩阵A(n阶)');
A=input('A=');
[n,n]=size(A);
x=ones(n,100);
y=ones(n,100);
m=zeros(1,100);
m(1)=max(x(:,1));
y(:,1)=x(:,1);
x(:,2)=A*y(:,1);
m(2)=max(x(:,2));
y(:,2)=x(:,2)/m(2);
p=0.0001;i=2;k
原创
2020-03-01 17:51:00
260阅读
极小极大的定义 Minimax算法 又名极小化极大算法,是一种找出失败的最大可能性中的最小值的算法(即最小化对手的最大得益)。通常以递归形式来实现。 Minimax算法常用于棋类等由两方较量的游戏和程序。该算法是一个零总和算法,即一方要在可选的选项中选择将其优势最大化的选择,另一方则选择令对手优势最小化的一个,其输赢的总和为0(有点像能量
层次分析法(Python)第一步 分析系统中各因素之间的关系,建立系统的递阶层次结构(根据题意和一些文献确定 画的层次分析图一定要在论文中画出第二步 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,构造两两比较矩阵(判断矩阵) 准则层—方案层的判断矩阵的数值可以自己填,但要结合实际来填写,如果题目中有其他数据,可以考虑利用这些数据进行计算。第三步 由判断矩阵计算被比较元素
转载
2023-06-07 15:36:06
200阅读
一、解释结构模型ISM介绍ISM(解释结构模型,Interpretative Structural Modeling Method,简称ISM方法)是一种系统工程研究方法,其作用在于研究系统结构关系情况;比如下图(有向图)中,已知各要素间的影响关系情况,现希望使用解释结构模型将各种逻辑结构关系进行梳理,比如找出各要素的层级层次关系情况,此时则可以使用解释结构模型。如果可以画出有向图,事实上可将‘有
文章目录第一步 导入第三方库和案例数据第二步 标准化数据第三步 判断矩阵一致性检验第四步 计算权重第五步 计算综合得分第六步 导出综合评价结果 层次分析法是建立递阶层次结构,通过比较评价准则(评价指标)的两两重要程度对评价方案(评价对象)进行综合评价的方法 递阶层次结构从上到下一般包括“目标层”、“准则层”、“方案层”举个例子:我们计划在周末观看一部超英电影“目标层”——选择一部超英电影“准则层
如果大家发现文章中有任何错误,欢迎在留言区批评指正,我也会持续更新有关数学建模学习的笔记。目录一、算法简介二、问题分析及理论基础层次分析法的思想:一致性检验步骤:计算权重:1、算术平均法2、几何平均法:求几何平均值 3、特征值法:总结:层次分析法步骤三、层次分析法的缺点四、代码实现五、例题 耳机挑选问题一、算法简介 层次分析法(The analyti
转载
2023-10-01 17:01:28
123阅读
简介从用自然语言书写的程序规格说明的描述中找出因(输入条件)和果(输出或程序状态的改变),可以通过因果图转换为判定表。因果图法即因果分析图,又叫特性要因图、石川图或鱼翅图,它是由日本东京大学教授石川馨提出的一种通过带箭头的线,将质量问题与原因之间的关系表示出来,是分析影响产品质量的诸因素之间关系的一种工具。作用因果图法是一种适合于描述对于多种输入条件组合的测试方法,根据输入条件的组合、约束关系和输
目录1.简介2.算法解析3.实例分析3.1 构造矩阵3.2 查看行数和列数3.3 求特征向量3.4 找到最大特征值和最大特征向量3.5 计算权重3.6 一致性检验3.7 计算评分完整代码1.简介 一种主观赋权的方法,在数据集比较小,实在不好比较的时候可以用这个方法,如果有别的选择还是尽量不要用这个算法比较好。
转载
2023-08-12 22:26:53
139阅读
提示:仅用到AHP层次分析法的部分功能因此只完成了python的部分实现 目录前言一、AHP是什么?层次分析法的特点:层次分析法的原理:二、使用步骤参考视频 前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。提示:以下是本篇文章正文内容,下面案例可供参考一、AHP是什么?层次分析法的特
转载
2023-10-01 13:58:40
110阅读
sift算法中有一步就是求空间极值点
import numpy as np
def getjizhi(inputs,pad=1,space=1):#输入矩阵,求取范围,边界距离
output=[]
inputs=np.array(inputs)
size=inputs.shape
if len(size) is 1:
pass
转载
2023-07-02 20:37:36
91阅读
给你一个下标从 0 开始的整数数组 nums ,其长度是 2 的幂。对 nums 执行下述算法: 设 n 等于 nums 的长度,如果 n == 1 ,终止 算法过程。否则,创建 一个新的整数数组 newNums ,新数组长度为 n / 2 ,下标从 0 开始。 对于满足 0 <= i < n /
原创
2022-08-20 06:55:33
89阅读
一、层次分析法原理层次分析法(Analytic Hierarchy Process,AHP)由美国运筹学家托马斯·塞蒂(T. L. Saaty)于20世纪70年代中期提出,用于确定评价模型中各评价因子/准则的权重,进一步选择最优方案。该方法仍具有较强的主观性,判断/比较矩阵的构造在一定程度上是拍脑门决定的,一致性检验只是检验拍脑门有没有自相矛盾得太离谱。二、代码实现需要借助Python的numpy
转载
2023-08-12 22:30:30
111阅读
我们在前面提到了5w2h方法,以及AARRR模型,5w2h就是5W2H分析法的内容,有7个单词组成,分别是What(用户要什么?)Why(为什么要?)Where(从哪儿得到?)When(我们什么时候做?)Who(对谁做?)How much(给多少?)How(怎么做?)这种方法是一个很经典的方法,而AARRR模型就是Acquisition(获取)、Activation(活跃)、R
层次分析法(Analytic Hierarchy Process,AHP)是一种常用的多准则决策方法,用于对不同的决策方案进行评估和比较。在本文中,我将教会你如何使用Python实现层次分析法。
## 流程概述
层次分析法主要包含以下几个步骤:
1. 建立判断矩阵:根据问题的具体情况,构建一个判断矩阵,用于反映各个因素之间的重要性和优先级关系。
2. 计算特征向量:通过计算判断矩阵的特征向
原创
2023-08-30 03:37:35
135阅读