编者按:目前 AI Agents 在各行各业的应用前景广阔,越来越多的企业开始尝试部署 AI Agents ,然而如何在企业生产环境中有效部署和管理 AI Agents,是工程师们面临的一大挑战。你是否曾面临这样的困惑:如何确保 AI Agents 在生产环境中稳定可靠地运行?如何应对突发的高并发请求?当 AI Agents 出现"幻觉"或系统崩溃时,又该如何快速恢复?本文提出了 "Multi-A
编者按:随着大语言模型(LLMs)规模的不断扩大,如何在有限的计算资源下高效部署这些模型成为了一个迫切需要解决的问题。模型量化作为一种有效的模型压缩技术,在保持模型性能的同时大大降低了计算和存储开销,因此广受关注。但对于许多人来说,模型量化的具体原理和实现方法仍然是一个“黑盒”。我们今天为大家带来的这篇文章,通过可视化图示详细解析各种模型量化技术的原理和实现方法,为各位读者提供一个全面且直观的模型
编者按:LLMs 规模和性能的不断提升,让人们不禁产生疑问:这种趋势是否能一直持续下去?我们是否能通过不断扩大模型规模最终实现通用人工智能(AGI)?回答这些问题对于理解 AI 的未来发展轨迹至关重要。在这篇深度分析文章中,作者提出了一个令人深思的观点:单单依靠扩大模型规模来实现 AGI 的可能性几乎为零。这篇文章为我们提供了一个清醒的视角,提醒我们在预测 AI 未来
编者按: 你是否曾经遇到过这些情况:你向 AI 助手提出了一个比较复杂的问题,但它给出的回答却比较浅显,甚至完全偏离了你的意图??或者,你询问了一个非常简单的问题, AI 助手却给出了一大堆不必要的信息,让你感到烦恼??传统的 RAG 技术虽然能有效减少 AI 回答内容中的错误,但并不能改进用户最初提交的 query 内容,因此可能会出现以下这些问题:对于用户提交的简单 query ,系统可能会消
编者按: 在大语言模型(LLMs)的部署及其相关的算力扩容过程中,更换 GPU 是否也可能会对模型的输出产生重大影响?这个问题的答案对于确保 LLMs 在不同硬件环境下的一致性和可靠性至关重要。我们今天为大家带来的这篇文章,作者的核心观点是:即使在相同的开发环境、系统配置和随机种子下,不同的 GPU 也会导致 LLMs 产生不同的模型输出。作者通过实验证明,在使用 Nvidia Tesl
编者按:在你构建 AI Agents 时,是否曾遇到这些困扰:总是在简单任务上出错,从而让你有时会怀疑自己的技术水平?面对客户的需求,AI Agent 表现得像个“笨蛋”,无法准确理解和执行指令?随着底层模型的更新,AI Agents 的性能不升反降,让人手足无措?这些问题不仅影响了 AI Agents 的性能,甚至可能导致项目延期、成本超支,甚至失去客户的信任。在 AI 技术飞速?发展
Copyright © 2005-2025 51CTO.COM 版权所有 京ICP证060544号