编者按: 如何最大限度地发挥 LLMs 的强大能力,同时还能控制其推理成本?这是当前业界研究的一个热点课题。针对这一问题,本期精心选取了一篇关于"提示词压缩"(Prompt Compression)技术的综述文章。正如作者所说,提示词压缩技术的核心目标是压缩向 LLMs 输入的上下文信息,删减非关键内容,保留语义核心,从而在不影响模型表现的前提下,降低推理成本。文中全面介绍了多种提示词压缩算法的原
编者按: 人工智能技术的发展离不开高质量数据的支持。然而,现有可用的高质量数据资源已日渐接近枯竭边缘。如何解决训练数据短缺的问题,是当前人工智能领域亟待解决的一个较为棘手的问题。本期文章探讨了一种经实践可行的解决方案 —— 合成数据(Synthetic Data)。如 AlphaZero、Sora 等已初步证实了合成数据具备的巨大潜力。对于语言模型来说,虽然要生成高质量的合成文本存在一定难度,但通
编者按:RAG 技术通过检索并利用外部知识源,能够较为有效地提升生成内容的准确性和多样性。然而,经典 RAG 流程也存在一些不足,例如不必要的检索会浪费计算资源,并可能引入无关内容或错误信息,影响生成质量。本文介绍了 Self-RAG 这一技术,通过引入 Reflection Tokens,语言模型能够根据具体需求动态决定是否检索外部知识
编者按: 如何充分发挥大模型的潜能,用好大模型,关键在于如何优化向它们发送的提示词(prompt),是为提示词工程(prompt engineering)。 本文Netflix 机器学习科学家Cameron R. Wolfe的提示词优化经验分享,阐述了目前提示词的主要构成要素,介绍了与提示词相关的上下文窗口相关信息,并总结了一些行之有效的优化策略,如实事求是,实证为本、先从简单着手、若无必要,尽
编者按: LLMs 被视为 AI 领域的一个里程碑式的突破,但要将其应用于实际生产环境,并且还能用对、用好并非易事。模型的使用成本和响应延迟是目前将大语言模型(LLMs)应用于生产环境中的核心难题之一。在本期刊载的这篇文章中,作者从自身项目的实践经验出发,分享了一系列实用技巧,帮助优化 LLM Prompt ,能够一定程度上降低大模型的使用成本和响应延迟。文章首先解析了导致高成本和
编者按: 本文深入探讨了如何通过优化动态上下文信息(Dynamic Context)来提升 AI Agents 的工作效率和准确性。文章首先概述了五种常见的技术策略,包括信息标识(Message Labeling)、针对不同需求设定不同上下文、优化系统提示词(System Prompts)、精简 RAG 系统中冗余信息,以及其他处理上下文的高级策略。随后,作者分享了一些技术实施细节和经验教训,这些
Copyright © 2005-2025 51CTO.COM 版权所有 京ICP证060544号