编者按: 在 AI 技术席卷软件工程的今天,我们是否真的可以仅凭“氛围”和直觉,就构建出可靠、安全且可维护的生产级系统?我们今天为大家带来的这篇文章,作者的核心观点是:“氛围编程(vibe coding)”与“AI 辅助的工程实践”存在本质区别,前者虽在创意激发和快速原型中具有价值,但绝不能替代结构化的工程方法。文章通过多个维度深入探讨了这一观点:从 FAANG 团队的实际工作
编者按: 随着大语言模型应用从简单的文本生成,发展到复杂的多轮对话机器人、检索增强生成(RAG)系统乃至智能体(Agent),我们应如何科学、有效地评估它们的性能,确保其稳定可靠?我们今天为大家带来的文章,作者的观点是,对现代 LLM 应用的评估,必须超越传统的 NLP 评估指标,转向一个分场景、系统化的评估体系,综合运用新兴的评价指标与自动化框架,从而全面地衡量系统的综合表现。作者系统梳理了从传
编者按: 你是否也曾认为,AI 推理服务注定是一场烧钱的无底洞?我们今天为大家带来的这篇文章,作者的核心观点是:OpenAI 和 Anthropic 等公司在推理环节的实际成本远低于外界普遍认知,甚至在某些场景下已具备大幅盈利能力。文章通过第一性原理,以 H100 GPU 集群为例,详细拆解了输入与输出 token 的成本结构,指出输入处理成本极低(每百万 token 约 0.001 美元),而输
编者按: 当 GPT-5 的表现未达预期,当众多 AI 应用试点项目收效甚微,当市场开始质疑人工智能的发展前景时,我们是否正在经历一场 AI 泡沫的破裂?还是说,这些表面现象背后隐藏着更深层次的产业逻辑?我们今天为大家带来的这篇文章,作者的观点是:当前 AI 市场并非陷入停滞或崩溃,而是进入了一个必要的“消化阶段”,这一过程虽伴随阵痛,却
编者按: 为什么训练大语言模型需要如此苛刻的网络条件?InfiniBand 真的是“封闭”技术吗?英伟达在 AI 网络领域的优势究竟从何而来?文章从 LLM 训练的梯度下降过程切入,生动阐释了为何在包含数万 GPU 的集群中,哪怕一个 GPU 延迟 20 微秒,都会造成算力的巨大浪费。作者随后对比了企业网络、超大规模云网络和高性能计算网络三种场景,指出只有 HPC 网
编者按: 在大规模人工智能模型训练日益依赖分布式 GPU 集群的今天,我们是否真正理解支撑这些系统高效运行的网络架构?数据如何从存储设备抵达 GPU?训练过程中不同并行策略又如何对网络提出截然不同的挑战?我们今天为大家带来的文章,作者的核心观点是:现代 AI 训练系统必须通过严格区分前端与后端网络,并针对数据并行、流水线并行和专家并行等不同通信模式进行协同优化,才能有
编者按: 当我们谈论训练万亿参数的大语言模型时,除了惊叹于其算力需求,是否曾深入思考过:如何让成千上万甚至数十万块 GPU 高效协同工作,像超级大脑般实时共享信息?本文以训练大语言模型对海量算力的迫切需求为切入点,深入剖析了大规模 GPU 集群网络设计的核心挑战与解决方案:首先揭示了理想化“全互联”架构的不可行性,进而引入网络交换机及分层“叶脊拓扑”结构。接着系统对比了两种关键
编者按: 您是否曾感觉到,尽管精心设计了提示词,AI 的表现却依然不尽如人意?甚至随着上下文越来越长,模型反而更容易“胡言乱语”?我们今天为大家带来的这篇文章,作者的核心观点是:“提示词工程”已经不够用了,下一代 AI 应用的核心竞争力在于“上下文工程”(Context Engineering)。文章系统地阐述了为何在智能体(Agent)时代,单纯堆砌信息的“提示词工程”思维会导致性能下降、成本飙
编者按: 在氛围编程日益普及的今天,开发者是否真的能够完全依赖 AI 编程助手来完成从设计到测试的全流程开发?我们今天为大家带来的文章,作者的观点是:AI 辅助编程是一种强大的效率工具,但开发者必须始终保持主导权,承担起代码质量、架构决策和测试验证的最终责任。文章系统性地介绍了“氛围编程”(Vibe Coding)的核心组成与工作流程,强调了明确需求与设计先行的重要性,并详细阐述了如何通
编者按: AI 智能体能否通过构建和使用工具来实现真正的自我改进?当我们谈论人工智能的“自我进化”时,究竟指的是训练阶段的算法优化,还是推理阶段的能力提升?我们今天为大家带来的这篇文章,作者的观点是:当前的大语言模型虽然能够构建出复杂的开发工具,但在实际执行任务时往往选择忽略这些自建工具,更倾向于依赖既有知识直接解决问题。文章通过对比 GPT-5 和 Claude Opus 4 两个先进模型的实验
编者按: 在 Transformer 架构诞生八年之际,我们是否真的见证了根本性的突破,还是只是在原有设计上不断打磨?今天我们为大家带来的这篇文章,作者的核心观点是:尽管大语言模型在技术细节上持续优化,其核心架构仍保持延续,真正的创新更多体现在效率提升与工程实现上。文章系统梳理了 2025 年多个主流开源模型的架构演进,重点分析了 DeepSeek-V3/R1 的多头潜在注意力(MLA)与混合专家
编者按: 你在开发 AI 智能体时,是否也曾为这些事头疼不已:每接入一个新工具就要重写集成代码?工具一多就难以统一管理?LLM 时而“幻觉”出根本不存在的工具调用?这些问题不仅拖慢开发节奏,更让智能体的稳定性和扩展性大打折扣。今天推荐的这篇文章,正来自一线开发者对 Model Context Protocol (MCP) 的深度实践与思考。对 LLM 来说,“常规”的
编者按: AI 真的在“思考”吗?当模型面对数学推理、代码生成或复杂决策时,它是如何一步步推演出答案的?如果你曾困惑于大模型在关键任务中表现不稳定、缺乏可解释性,甚至生成结果难以验证,那么你并不孤单。这些痛点不仅影响研发效率,更直接制约了AI在高风险场景中的落地可靠性。本文系统梳理了测试时计算(test-time compute)的三大实现路径:N 选 1 采样、多数投票及相关方法、思维
编者按: 我们今天为大家带来的文章,作者的观点是:分块(chunking)才是决定 RAG 系统成败的真正关键因素,不同场景需要匹配相应的分块策略。本文系统梳理了从基础到进阶的 21 种分块策略,涵盖了基础分块法、定长分块法、滑动窗口分块等传统方法,以及语义分块、上下文增强分块、多模态分块等前沿技术。作者 | Anjolaoluwa Ajayi编译 | 岳扬检索增强生成(RAG
编者按: 强化学习能否像 GPT-3 改变自然语言处理那样,通过大规模扩展实现质的飞跃?为什么强化学习至今仍困在“先预训练,再微调”的传统模式中?为什么即使是最先进的 RL 模型,一旦脱离训练环境就变得如此脆弱?无论是自动驾驶、机器人控制,还是复杂系统优化,我们都需要能够快速适应新任务、具备真正泛化能力的智能体。然而当前的 RL 模型就像是“高分低能”的应试
Copyright © 2005-2025 51CTO.COM 版权所有 京ICP证060544号