编者按: 如今,大模型及相关的生成式人工智能技术已经成为科技产业变革的新焦点,但大模型存在一些风险(容易产生偏见内容、虚假信息),其行为难以预测和控制。因此,如何持续监控和评估大模型行为以降低这些风险成为当下产学研各界的研究难点。本文作者通过分析 ChatGPT 在 35 天内对一组固定 prompt 的回答,探索了 7 组指标来评估 LLM 的行为变化。具体的指标及其意义如下:ROUGE:评估大
编者按: 最近,随着 ChatGPT 的出现,很多人认为人工智能领域进入了大探索时代。然而这仅仅只是生成式 AI 发展的第一幕。我们今天要给大家带来的这篇文章认为,生成式 AI 已经进入第二幕,即整合时代,不同系统和企业之间将出现广泛合作,以定制解决方案将 AI 能力深度嵌入各行各业。文章详细阐述了第二幕的几个特征:(1)科技巨头纷纷与 AI 初创公司建立合作伙伴关系;(2)将
编者按: 检索增强生成(RAG)系统最近备受关注,ChatGPT的火爆更让这类系统成为广泛讨论的热点。我们今天为大家带来的这篇文章,作者Matt Ambrogi的核心观点是:构建一个基本可用的RAG系统非常简单,但要使其达到实际生产可用的程度则异常困难,需要我们投入大量精力。为此,作者详细介绍了10种策略,包括清洗数据、尝试不同索引类型、优化分块策略、使用 Base Prompt、使用元数据过滤、
编者按: 如今传统的单机单卡模式已经无法满足超大模型进行训练的要求,如何更好地、更轻松地利用多个 GPU 资源进行模型训练成为了人工智能领域的热门话题。我们今天为大家带来的这篇文章详细介绍了一种名为 DDP(Distributed Data Parallel)的并行训练技术,作者认为这项技术既高效又易于实现。文章要点如下:(1)DDP 的核心思想是将模型和数
编者按: 近日,美国科技巨头 Google 宣布推出其认为规模最大、功能最强大的人工智能模型 Gemini,这种技术能够处理视频、音频和文本等不同内容形式的信息。那么机器学习模型与人类智能相比,谁的学习效率高? 许多人认为,人类大脑在学习效率上要远远优于我们目前训练的任何机器学习模型。面对这样的观点,本文作者进行了一番有趣的计算与思考。今天为大家带来的这篇文章,作者的核心观点是:从接受的原始训练数
编者按:近年来,强化学习在游戏和机器人控制等领域取得了较大的进步。如何设计一种强化学习算法,使机器人或 Agent 能够在复杂环境中学习最优策略(Optimal Policy )并作出最优的决策,这成为一个重要课题。我们今天为大家带来的这篇文章,作者指出可以通过设计并训练 Q-learning 算法来解决强化学习中的决策问题。作者首先以 Frozen Lake 游戏为例导入问题。然后详细介绍 Q-
编者按:近年来,深度学习应用日益广泛,其需求也在快速增长。那么,我们该如何选择合适的 GPU 来获得最优的训练和推理性能呢?今天,我们为大家带来的这篇文章,作者的核心观点是:Tensor Core、内存带宽和内存层次结构是影响 GPU 深度学习性能的几个最关键因素。作者详细解析了矩阵乘法运算在深度学习中的重要性,以及 Tensor Core 如何通过特有的矩阵乘法计算单元极大地提升计算性能。同时,
Copyright © 2005-2025 51CTO.COM 版权所有 京ICP证060544号