1.1 梯度下降法1.1.1 简介定义:梯度下降法是定义目标函数,通过误差反向传播的方法对模型参数进行调整,使得目标函数值最小,不再增长,则认为找到了一组参数,构造了模型。梯度下降法沿着误差下降速度最快的方向调整参数,一般是目标函数对某个参数的偏导数乘以步长来调整参数,最后使得误差收敛于最小值。这种方法适合在特征个数非常多,训练实例非常多,内存无法满足要求的时候使用。梯度下降法考虑的问题(1)步长
概述 梯度下降是神经网络中流行的优化算法之一。一般来说,我们想要找到最小化误差函数的权重和偏差。梯度下降算法迭代地更新参数,以使整体网络的误差最小化。 梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函
梯度下降算法的Python实现 http://yphuang.github.io/blog/2016/03/17/Gradient-Descent-Algorithm-Implementation-in-Python/ 1.梯度下降算法的理解 我们在求解最优化问题的时候,需要最小化或最大化某一个目标函数。如线性回归中,就需要最小化残差平方和。 某一向量的平方和函数可定义如下:
通过python程序,采用牛顿法和梯度下降法求解多元一次函数的线性回归方程梯度下降法原理梯度就是表示某一函数在该点处的方向导数沿着该方向取得较大值,即函数在当前位置的导数Δ=df(Ɵ)÷d(Ɵ)上式中,Ɵ是自变量,f(Ɵ)是关于Ɵ的函数,Ɵ表示梯度 简单来说Δ就是函数相对于自变量Ɵ的求导梯度下降算法公式: Ɵ=Ɵ0-Ƞ*Δf(Ɵ0)其中Ƞ是学习因子,由我们自己定义,Ɵ即为数据更新后下一个Ɵ0f(Ɵ
优化算法经常要用到导数、梯度、Hesse矩阵等,因此编写了一个类用于实现这些功能 建立一个Function类,构造函数的参数是一个函数其中part的功能是求偏导,var_index表示是第几个变量,val表示这些变量的值diff的功能是方便一元函数求导私有函数__diff_是为了hesse编写,传入要求导的变量,返回一个求导后的Function类hesse函数利用__diff_函数计算H
转载 2023-05-27 12:27:43
197阅读
如何让孩子爱上机器学习?1. 梯度gradient f : ▽f = (  ∂f/∂x,  ∂f/∂x,  ∂f/∂x )a) 这是一个向量b) 偏导和普通导数的区别就在于对x求偏导的时候,把y z 看成是常数  (对y求偏导就把x z 看成是常数)梯度方向其实就是函数增长方向最快的地方,梯度的大小代表了这个速率究竟有多大,因此
返回Opencv-Python教程高斯平滑、双边平滑 和 均值平滑、中值平滑 介绍的平滑处理可以看做是图像的“低通滤波”,它会滤除掉图像的“高频”部分,使图像看起来更平滑,而图像梯度则可以看做是对图像进行“高通滤波”,它会滤除图像中的低频部分,为的是凸显出图像的突变部分。在 形态学变换~开闭操作,顶帽黑帽,形态学梯度,击中击不中(morphologyEx)&
梯度下降算法是一个很基本的算法,在机器学习和优化中有着非常重要的作用,本文首先介绍了梯度下降的基本概念,然后使用python实现了一个基本的梯度下降算法。梯度下降有很多的变种,本文只介绍最基础的梯度下降,也就是批梯度下降。实际应用例子就不详细说了,网上关于梯度下降的应用例子很多,最多的就是NG课上的预测房价例子: 假设有一个房屋销售的数据如下:面积(m^2) 销售价钱(万元)面积(m^2
Gradient Descent - 梯度下降梯度下降法(英语:Gradient descent)是一个一阶最优化算法,通常也称为最速下降法。 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索。如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点;这个过程则被称为梯度上升法。以上是维基百科对梯度下降的解释。下面我们
1.梯度下降梯度下降常用于机器学习中求解符合最小损失函数的模型的参数值,梯度下降也是BP神经网络的核心,本文将介绍批量梯度下降法(BGD)。如上图所示,梯度下降的过程便是沿梯度方向,按照一定的步伐求解极小(大)值。这里举一个简单的例子,假如你在一座山上,你怎样才能最安全最快速地下山,这里有两个条件,一是安全下山,二是快速下山。答案便是沿着较为陡峭(梯度)的地方,且容易落脚(步伐大小,即学习率)的地
图像梯度我们知道一阶导数可以用来求极值。把图片想象成连续函数,因为边缘部分的像素值与旁边的像素明显有区别,所以对图片局部求极值,就可以得到整幅图片的边缘信息。不过图片是二维的离散函数,导数就变成了差分,这个查分就变成了图像梯度。 1. 垂直边缘提取滤波是应用卷积来实现的,卷积的关键就是卷积核。我们来考察下面这个卷积核:这个核是用来提取图片中的垂直边缘的,怎么做到的呢?看下图:当前列左右两
梯度降落法(gradient descent),又名最速降落法(steepest descent)是求解无束缚最优化问题最经常使用的方法,它是1种迭代方法,每步主要的操作是求解目标函数的梯度向量,将当前位置的负梯度方向作为搜索方向(由于在该方向上目标函数降落最快,这也是最速降落法名称的由来)。梯度降落法特点:越接近目标值,步长越小,降落速度越慢。直观上来看以下图所示:这里每个圈代表1个函数梯度,最
图像梯度前言Sobel算子算子的定义Sobelx效果演示Sobely效果演示完整轮廓直接计算复杂图片的轮廓Scharr算子与laplacian算子scharr算子的定义laplacian算子定义三种算子的效果对比结尾 前言前面的文章中我们介绍了用膨胀和腐蚀得到了图像轮廓,图像梯度也是一种可以得到图像轮廓的方式,同时他也是边缘检测的其中一个步骤,下面我们来介绍各种可以求得图像梯度的算子。假设我们有
在整个图像处理的学习过程中可以看到,在很多应用中图像强度的变化情况是非常重要的信息。强度的变化可以用灰度图像I(对于彩色图像,通常对每个颜色通道分别计算导数)的x和y的方向导数和进行描述。图像的梯度向量为:梯度有两个重要的属性,一个是梯度的大小:它描述了图像变化的强弱,一是梯度的角度:它描述了图像中在每个点(像素)上强度变化最大的方向。NumPy中的arctan2()函数返回弧度表示的有符号角度,
首先要明白梯度下降算法我们能干什么?什么时候可以用到梯度下降? 我们先进行两个例子,一个二维函数问题,一个三维的现实问题: 二维函数:比如我们要求 三维现实问题:你站在一个一个的山中,你想要的去谷底,那怎么样办才能最快的到达局部谷底呢?要沿着哪个方向进行走动呢? 然后带着问题去思考梯度下降算法。首先你会有一个函数,比如这个函数有两个参数的函数J(θ_1,θ_2),我们需要一种算法去最小化这个函数
什么是梯度下降法梯度下降 Gradient Descent:本身不是一个机器学习的算法,而是一种基于搜索的最优化方法。 作用:最小化一个损失函数。 梯度上升法:最大化一个效用函数。η称为学习率(learning rate)η的取值影响获得最优解的速度:如当η过小,需要经过非常多次的迭代η取值不合适,甚至得不到最优解:如当η过大,可能不能到达使目标更小的点η是梯度下降法的一个超参数初始点:并不是所有
  注意,sobel算子和laplace算子加和均为0! 代码如下:import numpy as np import cv2 as cv def sobel_demo(image): #CV_8U的取值范围为[0,255] #此处ddepth经过加减,范围已经超过CV_8U,所以取CV_32F #dx=1,dy=0,先求dx方向 g
转载 2023-06-19 15:07:22
248阅读
图像梯度我们知道一阶导数可以用来求极值。把图片想象成连续函数,因为边缘部分的像素值与旁边的像素明显有区别,所以对图片局部求极值,就可以得到整幅图片的边缘信息。不过图片是二维的离散函数,导数就变成了差分,这个查分就变成了图像梯度。 1. 垂直边缘提取滤波是应用卷积来实现的,卷积的关键就是卷积核。我们来考察下面这个卷积核:这个核是用来提取图片中的垂直边缘的,怎么做到的呢?看下图:当前列左右两
转载 2023-08-08 11:08:08
497阅读
  首先,引出一个术语:gate。它指一个函数,也可以理解为上一个例子中的circuit diagram的每个节点。比如q=x+y是一个gate,f=qz也是一个gate。任何一类可微函数都可以作为一个gate,我们可以把多个gate组合成一个gate,或者在方便的时候把一个gate分解成多个gate。下面看例子:   这个表达式描述了一个使用sigmoid函数的二维神经元(输入x和权重w)。
sobel算子理论基础下面计算P5点的x方向的梯度值,用P5所在列的右侧列减去左侧列,如果相差比较大,可以认为P5所在列是边界,否则不是边界。(下面是3*3的,Sobel()函数的ksize参数不传默认也是3,传值的话必须是奇数) 下面计算P5点的y方向的梯度值,用P5所在行的下侧行减去上侧行,如果相差比较大,可以认为P5所在行是边界,否则不是边界。 这就是P5点的sobel算子:sobel算子及
  • 1
  • 2
  • 3
  • 4
  • 5