简介Tensorflow serving(以下简称TFS)提供GRPC和Restful接口,加载tensorflow训练好的模型文件,实现模型在线服务。配置和模型文件TFS启动时可以指定一个配置文件model.conf,配置文件格式如下,下面的配置表示TFS会加载最新的2个模型: model_config_list: { config: { name: "dnn",
前言前段时间更新自己电脑上的tf1.4到1.9,没想到踩了这么多坑。。。特意记录下来希望可以帮到大家删除旧版本如果你电脑上没有安装旧版本的tf,就可以忽略这一步。我是因为想要升级到最新版本,所以需要先卸载旧版本。旧版本是用anaconda安装的,卸载很简单,首先进入安装tf的环境,我的环境是“tensorflow”:activate tensorflow然后卸载TensorFlow就好,或者直接删
Linux 是一种广泛使用的开源操作系统,其内核是由 Linus Torvalds 在 1991 年创建的。Linux 操作系统有许多不同的版本,其中一个开源的版本是 Red Hat Enterprise Linux,简称为 Red Hat 或 红帽。红帽是一家知名的企业开源软件公司,其开发了很多优秀的软件产品,其中包括 Red Hat Enterprise Linux 操作系统。 Tensor
原创 2024-05-16 10:24:07
109阅读
深度学习篇之tensorflow前言手写数字识别数据集简介mnist数据展示将mnist数据集中第一张图片逐个像素读取放入csv文件手写数字识别实战Estimator常用内置的Estimator简介tf. estimator.DNNClassifier(深层神经网络算法)介绍实战代码及其分析使用tensorboard对过程进行可视化寻找最优模型 前言环境的配置详见我的这篇博客:安装tensorf
Anaconda的下载、安装、卸载及环境配置1.下载Anaconda2.安装Anaconda3.Anaconda的环境配置4.赋予普通用户/超级用户使用Anaconda的权限5.卸载Anaconda 1.下载Anaconda进入Anaconda官网,下载linux版的anaconda(.sh结尾的文件)2.安装Anaconda1.将文件拷贝到Ubuntu中,在相应位置输入命令sh 文件名.sh进
转载 2024-09-27 09:29:12
101阅读
前段时间实践tensorflow目标检测模型再训练,过程见博文tf2目标检测-训练自己的模型总结目标检测模型再训练过程,有以下几点需注意:1 训练集和测试集训练图片每张只包含一个目标,因此可用小尺寸图片,且统一训练图片大小,有助于加快训练过程。测试图片则用大图片,包含多个需检测目标,同时包括应排除的目标,检验模型训练成果。2 模型处理窗口和输入图片resize问题每个再训练模型有处理窗口,例如ss
转载 2024-04-24 16:05:34
72阅读
cifar10训练数据集下载链接:https://pan.baidu.com/s/1Qlp2G5xlECM6dyvUivWnFg 提取码:s32t代码解析前置配置引入tensorflow库,和其他辅助库文件。安装方式为pip3 install tensorflow numpy pickle。详细过程不在这里描述。 在这里,训练和测试数据集文件放在该脚本的父文件夹中,因此按照实际情况来对CIFAR_
文章目录Tensorflow Serving实战安装Tensorflow serving准备YOLOX模型部署YOLOX模型测试YOLOX模型模型多版本部署模型的热部署参考 Tensorflow Serving使用Tensorflow框架训练好模型后,想把模型部署到生产环境可以使用Tensorflow Serving进行部署。Tensorflow Serving具有以下作用:兼容Tensorf
本篇介绍函数包括: tf.conv2d tf.nn.relu tf.nn.max_pool tf.nn.droupout tf.nn.sigmoid_cross_entropy_with_logits tf.truncated_normal tf.constant tf.placeholder tf.nn.bias_add tf.reduce_mean tf.squared_d
转载 2024-02-22 00:49:25
37阅读
tensorflow实现线性回归模型1.变量(1)变量的创建(2)变量的初始化(3)变量的作用域2.可视化学习Tensorboard(1)开启tensorboard(2)增加变量显示3.tensorflow实现线性回归实战(1)Tensorflow运算API(2)梯度下降API(3)实现线性回归4.模型加载和保存5.命令行参数 1.变量(1)变量的创建变量也是一种OP,是一种特殊的张量,能够进行
  TensorFlow提供了一个非常简单的API来保存和还原一个神经网络模型。这个API就是tf.train.Saver类。以下代码给出了保存TesnsorFlow计算图的方法。import tensorflow as tf #声明两个变量并计算他们的和 v1 = tf.Variable(tf.constant(1.0, shape = [1]), name = "v1") v2 = tf.V
转载 2024-06-07 05:52:46
30阅读
文章目录前言一、tensorflow-cpu指定版本的卸载二、tensorflow-gpu指定版本的卸载三、tensorflow-cpu指定版本的安装1、创建虚拟环境2、激活虚拟环境3、安装指定版本的tensorflow四、tensorflow-gpu指定版本的安装安装CUDA安装cuDNN安装tensorflow_gpu-2.1.0测试tensorflow安装成功可能遇到的问题总结 前言学习随
转载 2024-03-17 14:28:54
176阅读
Windows安装tensorflow错误原因查询、卸载tensorflow与重新安装深度学习这个大坑的苦与甜,谁踩谁知道。上文介绍了windows如何安装tensorflow点我:Windows(64)位安装tensorflow,但因为一般电脑上会有好几个版本的python,比如我电脑上装了从2.7各版到3.6等等(具体怎么查询电脑的python版本下面会介绍到),所以在安装的时候一定要确认选择
在开始学习之前推荐大家可以多在FlyAI竞赛服务平台多参加训练和竞赛,以此来提升自己的能力。FlyAI是为AI开发者提供数据竞赛并支持GPU离线训练的一站式服务平台。目录简介TensorFlow的特性TensorFlow组件TensorFlow用法介绍一、简介TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。2015年11月9日,Google
1.checkpoint(*.ckpt)1.1文件结构介绍:---checkpoint ---model.ckpt-240000.data-00000-of-00001 ---model.ckpt-240000.index ---model.ckpt-240000.meta如图所示,Tensorflow模型主要包括两个方面内容:1)神经网络的结构图graph;2)已训练好的变量参数。因此Tenso
模型保存和加载(一)TensorFlow模型格式有很多种,针对不同场景可以使用不同的格式。格式简介Checkpoint用于保存模型的权重,主要用于模型训练过程中参数的备份和模型训练热启动。GraphDef用于保存模型的Graph,不包含模型权重,加上checkpoint后就有模型上线的全部信息。SavedModel使用saved_model接口导出的模型文件,包含模型Graph和权限可直接用于上
转载 2024-05-31 20:10:39
76阅读
关于Tensorflow模型的保存、加载和预导入1. 什么是Tensorflow模型1.1 元图:1.2 检查点文件:2. 保存Tensorflow模型3. 导入预先训练的模型4. 使用已恢复的模型 参考ANKIT SACHAN:A quick complete tutorial to save and restore Tensorflow models1. 什么是Tensorflow模型Ten
tf1: tf.GradientTape()函数: tf提供的自动求导函数 x = tf.Variable(initial_value=3.) with tf.GradientTape() as tape: # 在 tf.GradientTape() 的上下文内,所有计算步骤都会被记录以用于求导 y = tf.square(x) y_grad = tape.gradient(y,
转载 2024-05-26 16:41:34
38阅读
在所有的数据都处理完了之后,接下来就可以进行模型的训练了。在Github上FaceNet项目的介绍中有softmax和论文中提到的三元损失训练triplet两种方式,这边简单的介绍下softmax的训练方法。FaceNet已经将所有的方法都已经封装好,训练程序在src目录下的train_softmax.py文件中,在训练之前,我们首先要简单的修改下这份文件,让它适用于当前版本。找到260行,搜索i
用过 TensorFlow 时间较长的同学可能都发现了 TensorFlow 支持多种模型格式,但这些格式都有什么区别?怎样互相转换?今天我们来一一探索。1. CheckPoint(*.ckpt)在训练 TensorFlow 模型时,每迭代若干轮需要保存一次权值到磁盘,称为“checkpoint”,如下图所示:这种格式文件是由 tf.train.Saver() 对象调用 saver.save()
转载 2024-03-28 09:21:00
44阅读
  • 1
  • 2
  • 3
  • 4
  • 5