mnist数据集包含 7 万张黑底白字手写数字图片,其中 55000 张为训练集,5000 张为验证集,10000 张为测试集。每张图片大小为 28*28 像素,图片中纯黑色像素值为 0,纯白色像素值为 1。数据集的标签是长度为 10 的一维数组,数组中每个元素索引号表示对应数字出现的概率。1.使用input_data模块中的read_data_sets()函数加载mnist数据集:from te
GPU环境的配置 在深度学习中,模型往往很复杂,数据量很大,此时使用GPU运行会快很多。而使用GPU就需要安装CUDA和CuDNN。本文是为了使用tensorflowgpu版本而使用的GPU。 (1)GPU的配置 首先,要使用TensorFlowGPU,需要达到的硬件前提:显卡类型是NVIDIA,显卡的计算能力要至少达到3.0。 可以在下面的网站查看: https://developer.nv
自己这几天更换电脑,再加上前次旧电脑学习,安装了好几次TensorFlow,每次都遇到了一些问题,经常缺一些文件,在网上下载文件还很慢,走了不少弯路,特将完整的安装方法记录如下,以便后续使用,也供同行参考。TensorFlow的学习需要有专门的Nvida的GPU显卡的电脑,GPU的显存最好在4G以上,我以前那台电脑只有1G显示只能学习一些非常初级模型,稍微复杂的模型就无法运行。对于没有GPU独显的
TensorFlow-CPU与GPU的安装教程TensorFlow-CPU1.下载Anaconda2. 下载Vsual C++3. 安装TensorFlow-CPUTensorFlow-GPU1.检测当前GPU驱动版本是否满足大于410版本2.下载Vsual C++3.下载Anaconda或Miniconda4.替代.condarc配置文件4.安装Tensorflow-GPU 写在前面:CPU和
转载 2024-02-29 23:46:23
112阅读
WIN10 + python3.5 + Aaaconda3-5.1.0 + CUDA10.0 + cuDNN7.6.5.32 + tensorflow-gpu-1.13.1 安装步骤1、查找python与tensorflow版本对应2、安装python3.53、Anaconda安装4、CUDA与cudnn安装5、tensorflow安装报错问题解决 1、查找python与tensorflow版本
如果你使用类似C++这样的语言在单核CPU上编写你的软件,为使其能够在多个GPU上并行运行,你可能需要从头开始重写你的软件。但是在TensorFlow中并非如此。由于其符号性质,tensorflow可以隐藏所有这些复杂的过程,使你无需在多个CPU和GPU上扩展程序。让我们从在CPU上添加两个向量开始:import tensorflow as tf with tf.device(tf.Device
新手小白安装过程中遇到种种问题,大概花了两天的时间去安装tensorflow-gpu,其他相关概念在这里就不多提了,直接就是进入安装的需要。这里安装的tensorflow-gup==1.9.0版本,对应的python是3.6。一、确定自己的显卡支持CUDA1、查看自己的显卡:设备管理器-显示适配器 2、找到对应的显卡:https://developer.nvidia.com/cuda-gpus二、
目录一、Ubuntu18.04 LTS系统的安装1. 安装文件下载2. 制作U盘安装镜像文件3. 开始安装二、设置软件源的国内镜像1. 设置方法2.关于ubuntu镜像的小知识三、Nvidia显卡驱动的安装1. 首先查看显卡型号和推荐的显卡驱动2. 安装nvidia-390版本驱动3. 重启系统,可以查看安装是否成功四、CUDA9.0的安装1. CUDA版本选择2. 安装CUDA9.03. 设置
转载 2024-05-18 23:13:28
284阅读
在Windows安装tensorflow-gpu总共分为以下几点安装Python或者Anaconda(建议后者,使用起来非常方便)安装cuda安装cuDNN安装tensorflow-gpuAnaconda的安装Anaconda安装起来很简单,去Anaconda的官网寻找自己想要下载的版本,进行下载和安装即可。NOTICE:正常情况下会自己将Anaconda的很多路径加入到环境变量中,但是为了保证万
转载 2024-06-07 18:05:35
25阅读
这是19年初学faster rcnn时记下的一些笔记。 这几天主要的任务是用tensorflow配置并运行Faster-RCNN,配置好笔记本的环境,下载好各个需要用到的库。虽然说下几个软件说起来是很轻松的事,但这学期一直在不断的尝试配置tensorflowGPU版本,但每次都因为一些解决不了的原因失败了,网上的教程太多了,自己也分不清该按照哪个版本来。 这次经过几天的不断尝试,终于成功地运行了
准备工作:       在开始安装前,如果你的电脑装过tensorflow,请先把他们卸载干净,包括依赖的包(tensorflow-estimator、tensorboard、tensorflow、keras-applications、keras-preprocessing),不然后续安装了tensorflow-gpu可能会出现找不到cu
WIN10配置Tensorflow-GPU一、电脑配置及版本 WIN10+GTX1050Ti+CUDA-9.0.176+CUDNN-9.0-windows10-x64-v7.5.0.56 IDE:Pycharm 框架:Tensorflow-GPU Python版本:Python3.6二、配置过程 1.首先要看显卡是否支持GPU加速 CUDA及CUDNN是NAVIDIA开发的,首先显卡必须是NAVI
转载 2024-05-14 09:22:38
165阅读
本文将对Tensorflow中的常用方法进行总结。TensorFlow 将图形定义转换成分布式执行的操作, 以充分利用可用的计算资源(如 CPU 或 GPU。一般你不需要显式指定使用 CPU 还是 GPU, TensorFlow 能自动检测。如果检测到 GPU, TensorFlow 会尽可能地利用找到的第一个 GPU 来执行操作.并行计算能让代价大的算法计算加速执行,TensorFlow也在实现
TensorFlow有CPU版本和GPU版本之分,CPU版本安装相对简单,按着TensorFlow的官方文档进行安装即可。但CPU版本只能使用CPU进行计算,计算效率低。对于简单的模型计算可以使用CPU模式,但对于复杂的模型训练就需要GPU的支持了。GPU版本安装方式TensorFlowGPU版本有两种安装方式:源码编译安装这种方式灵活性最强,但这种方式不但会涉及TensorFlo
1 版本兼容性问题在pycharm环境下使用tensorflow-gpu,主要是要安装四个文件,python、tensorflow-gpu、cuda和cudann。一般而言,不同版本的CUDA要求不同的NVIDIA驱动版本,同时显卡驱动版本要不低于CUDA的安装版本,具体的对照关系如下: 如下链接对应了官方的版本要求说明:https://docs.nvidia.com/cuda/cuda-tool
转载 2024-05-16 05:19:36
389阅读
文章目录查看`GPU`数量设置`GPU`加速限制使用的`GPU`,不限制消耗显存的大小动态显存申请,仅在需要时申请显存空间限制使用的`GPU`,并且限制使用的显存大小单`GPU`模拟多`GPU`环境 Tensorflow GPU训练配置 以下教程建立在已经安装好Tensorflow2深度学习环境基础上,进一步管理GPU资源消耗。查看GPU数量import tensorflow as tf # 查
TensorFlow 计算加速内容摘自《TensorFlow实战Google深度学习框架》 第二版1. TensorFlow使用GPUTensorFlow程序可以通过tf.device函数来通过名称指定运行每一个操作的设备,这个设备可是是本地的GPU或CPU,也可以是一台远程的服务器。在默认情况下,就算及其有多个CPU,TensorFlow也不会区分他们,所有的CPU都使用/cpu:0为名称。一台
以下为博客全文由于设备的处理和能力有限,在移动设备上的计算密集型机器学习模型上运行推理,对资源的要求很高。虽然转换为定点模型是一种加速的方法,但我们的用户已经要求我们提供GPU支持作为加速原始浮点模型推理的选项,且不增加量化的额外复杂性和潜在的准确性损失。我们很高兴地宣布,随着TensorFlow Lite GPU后端开发者预览版的发布,你将能够利用移动GPU来选择模型训练(如下所示),对于不支持
转载 2024-05-08 09:50:06
84阅读
历时两天,踩过很多坑,终于语气词装好了。说一下我的情况:tensorflowGPU-1.14.0,CUDA-10.0,cuDNN-v7.6.5,Anaconda3-2019.10,python-3.6,1650显卡。2020年3月2日 好了下面是步骤!大致的步骤为一、安装CUDA和cuDNN。二、安装Anaconda三、安装tensorflowGPU 下面一一介绍:一、安装CU
转载 2024-05-27 10:01:45
452阅读
支持的设备在一套标准系统中通常有多台计算设备。TensorFlow 支持 CPU 和 GPU 这两种设备。它们均用 strings 表示。例如: "/cpu:0":机器的 CPU。 "/device:GPU:0":机器的 GPU(如果有一个)。 "/device:GPU:1":机器的第二个 GPU(以此类推)。如果 TensorFlow
转载 2024-08-30 14:52:34
44阅读
  • 1
  • 2
  • 3
  • 4
  • 5