tensorflow
转载
2022-09-17 15:49:32
88阅读
TensorFlow(1):使用Docker镜像搭建TensorFlow环境 1,关于TensorFlowTensorFlow 随着AlphaGo的胜利也火了
原创
2022-03-02 18:18:41
1126阅读
文章目录前言部署环境硬件环境软件环境部署步骤细节说明开始部署最优实践部署异常权限问题max_map_count 部署环境硬件环境阿里云乞丐版, 单核2G内存!!! 程序猿,懂得都懂!SWAP傍身,用时间换空间,2G的内存不够用,只能降低性能使用虚拟内存,谁让是猿呢?[root@Genterator ~]# cat /proc/cpuinfo | grep name | cut -f2 -d: |
转载
2023-08-21 14:18:35
118阅读
推荐的基础镜像列表https://tianchi.aliyun.com/forum/postDetail?postId=67720TensorF
原创
2022-09-16 13:49:51
205阅读
遇到的问题以及解决方案Question1:对于随机生成的x,y训练出来的拟合直线效果不理想。解决方案:将权重的标准差调整为0后效果仍然不理想,然后根据线性回归的流程,对所有参数设置的一一进行排查,最后将错误定位到梯度下降法的步长,起初设置为0.0001,导致步长太小,使得直线拟合速度太慢,迭代5000步后仍然无法达到理想程度,因此加大步长,加快拟合速度,但步长又不可以太大,会导致最终结果在最佳收敛
官网:https://www.tensorflow.org/ https://www.tensorflow.org/install/install_windows You must choose one of the following types of TensorFlow to install:
转载
2018-05-11 01:15:00
145阅读
前言前几天,我们刚下发了毕业设计的题目,我选的题目为基于TensorFlow的深度学习与研究,这将会是一个系列文章,截止2020-07我会将所有相关内容用更加通俗易懂的方式发布在公众平台上,我们一块学习,让我们嗨起来~。工欲善其事,必先利其器。今天这篇文章,我们就先学习如何在Windows、Linux上搭建开发环境。Windows下环境搭建11. 安装Python环境进入官网,根据个人电脑系统选择
转载
2021-12-30 11:36:58
632阅读
docker基础教程:https://legacy.gitbook.com/book/yeasy/docker_practice/details,通过这个教程可以了解docker基本概念 为什么使用docker?避免复杂的环境的配置,比如cuda。而在ubuntu上运行docker tensorflow-gpu镜像,仅仅需要安装nvidia驱动即可,幸运的是一般通过软件更新器(softw
转载
2023-08-16 17:43:07
85阅读
常用的深度学习训练模型为数据并行化,即TensorFlow任务采用相同的训练模型在不同的小批量数据集上进行训练,然后在参数服务器上更新模型的共享参数。TensorFlow支持同步训练和异步训练两种模型训练方式。异步训练即TensorFlow上每个节点上的任务为独立训练方式,不需要执行协调操作,如下图所示:同步训练为TensorFlow上每个节点上的任务需要读入共享参数,执行并行化的梯度计算,然后将
目录 tensorflow容器化一、docker安装二、tensorflow三、创建自己的镜像四、编写Dockerfile五、build镜像六、运行镜像补充:依赖缺失问题解决tensorflow容器化一、docker安装二、tensorflow在docker中运行tensorflow的第一步就是要找到自己需要的镜像,我们可以去docker hub找到自己需要的tensorflow镜像.t
转载
2023-08-31 23:16:52
79阅读
搭建TensorFlow的GPU Docker环境
转载
2023-06-30 18:02:22
80阅读
虽然可以通过自己编程实现前向和反向传播过程但是随着神经网络的层数增加会导致编程趋于复杂,为了节省这种工作,可以使用现有深度学习框架。目前的已有的学习框架有很多Tensorflow,caffe,Torch,pytorch,Theano等,使用最多的目前是Tensorflow,本文讲简单介绍下Tensorflow的使用方法。1.预备工作import tensorflow as tf
sess = tf
前言新手学习可以点击参考Google的教程。开始前,我们先在本地安装好 TensorFlow机器学习框架。 1. 首先我们在本地window下安装好python环境,约定安装3.6版本; 2. 安装Anaconda工具集后,创建名为 tensorflow 的conda 环境:conda create -n tensorflow pip python=3.6; 3. conda切换环境:act
TensorFlow 源码 截止到目前为止,TensorFlow 在 【Github】 的 Contributors 已经接近900人,Fork 30000次。 学习这么庞大的开源项目,首先必须要搞清楚其代码组织形式,我们先来看目录结构: &nb
写在前面这个系列博客会具体讲讲怎么用tensorflow去搭建网络,其中一些细节例如如何加载数据集、需要哪些包可以参考我的其他博客。以此,来增加自己的编程能力。也会解读一些keras源码等一、神经网络中有哪些层点我从连接方式来说:全连接Dense、Conv2D、Conv2DTranspose、RNN等主要的功能层:BN层,激活函数层、Input层,Lambda层、Dropout层、Flatten层
1. 背景tensorflow是一套可以通过训练数据的计算结果来反馈修改模型参数的一套框架,由谷歌公司于2015年11月开源,可以点击playground来可视化的尝试操作tensorflow,随便试了一下,挺好玩: 使用如下语句进行安装:pip install tensorflowtensorflow近期发布了2.0预览版本,改动极大,在第4部分介绍。TensorFlow再这么完善下去,都可以不
一、TensorFlow Serving简介TensorFlow Serving是GOOGLE开源的一个服务系统,适用于部署机器学习模型,灵活、性能高、可用于生产环境。 TensorFlow Serving可以轻松部署新算法和实验,同时保持相同的服务器架构和API,它具有以下特性:支持模型版本控制和回滚支持并发,实现高吞吐量开箱即用,并且可定制化支持多模型服务支持批处理支持热更新支持分布式模型易于
转载
2023-06-25 20:55:20
5阅读
第一步,安装docker第二步,docker的tensorflow serving镜像安装,有两种,一个是CPU版本,一个是GPU版本(重要)在后面需要简单测试下tensorflow serving+docker环境是否成功,这里我们使用tensorflow serving源码中的模型,所以首先将tensorflow serving源码克隆到自己的电脑中,命令:git clone https://
步骤:数据处理:将数据喂给网络搭建网络模型Loss训练模型测试第一步 数据处理将数据集处理成FTRecord的标准格式(也可以是其它格式,详见下面的参考链接)将数据传给TensorFlowTensorFlow 读取自己的数据集数据存储形式如下:Train_TFRecords_00123
Train_TFRecords_00017
......数据存储地址TFRecordPath;用os.listd
# 如何在Docker中实现TensorFlow
对于初学者来说,将TensorFlow与Docker结合使用可能会有些复杂,但只要按照一定的流程和步骤操作,就会发现其实并不难。以下是实现TensorFlow Docker的一步步指导。
## 整体流程
下面的表格简要概述了将TensorFlow与Docker结合使用的具体步骤:
| 步骤 | 描述