遇到的问题以及解决方案Question1:对于随机生成的x,y训练出来的拟合直线效果不理想。解决方案:将权重的标准差调整为0后效果仍然不理想,然后根据线性回归的流程,对所有参数设置的一一进行排查,最后将错误定位到梯度下降法的步长,起初设置为0.0001,导致步长太小,使得直线拟合速度太慢,迭代5000步后仍然无法达到理想程度,因此加大步长,加快拟合速度,但步长又不可以太大,会导致最终结果在最佳收敛
官网:https://www.tensorflow.org/ https://www.tensorflow.org/install/install_windows You must choose one of the following types of TensorFlow to install:
转载
2018-05-11 01:15:00
145阅读
常用的深度学习训练模型为数据并行化,即TensorFlow任务采用相同的训练模型在不同的小批量数据集上进行训练,然后在参数服务器上更新模型的共享参数。TensorFlow支持同步训练和异步训练两种模型训练方式。异步训练即TensorFlow上每个节点上的任务为独立训练方式,不需要执行协调操作,如下图所示:同步训练为TensorFlow上每个节点上的任务需要读入共享参数,执行并行化的梯度计算,然后将
前言前几天,我们刚下发了毕业设计的题目,我选的题目为基于TensorFlow的深度学习与研究,这将会是一个系列文章,截止2020-07我会将所有相关内容用更加通俗易懂的方式发布在公众平台上,我们一块学习,让我们嗨起来~。工欲善其事,必先利其器。今天这篇文章,我们就先学习如何在Windows、Linux上搭建开发环境。Windows下环境搭建11. 安装Python环境进入官网,根据个人电脑系统选择
转载
2021-12-30 11:36:58
632阅读
TensorFlow 源码 截止到目前为止,TensorFlow 在 【Github】 的 Contributors 已经接近900人,Fork 30000次。 学习这么庞大的开源项目,首先必须要搞清楚其代码组织形式,我们先来看目录结构: &nb
前言新手学习可以点击参考Google的教程。开始前,我们先在本地安装好 TensorFlow机器学习框架。 1. 首先我们在本地window下安装好python环境,约定安装3.6版本; 2. 安装Anaconda工具集后,创建名为 tensorflow 的conda 环境:conda create -n tensorflow pip python=3.6; 3. conda切换环境:act
虽然可以通过自己编程实现前向和反向传播过程但是随着神经网络的层数增加会导致编程趋于复杂,为了节省这种工作,可以使用现有深度学习框架。目前的已有的学习框架有很多Tensorflow,caffe,Torch,pytorch,Theano等,使用最多的目前是Tensorflow,本文讲简单介绍下Tensorflow的使用方法。1.预备工作import tensorflow as tf
sess = tf
写在前面这个系列博客会具体讲讲怎么用tensorflow去搭建网络,其中一些细节例如如何加载数据集、需要哪些包可以参考我的其他博客。以此,来增加自己的编程能力。也会解读一些keras源码等一、神经网络中有哪些层点我从连接方式来说:全连接Dense、Conv2D、Conv2DTranspose、RNN等主要的功能层:BN层,激活函数层、Input层,Lambda层、Dropout层、Flatten层
1. 背景tensorflow是一套可以通过训练数据的计算结果来反馈修改模型参数的一套框架,由谷歌公司于2015年11月开源,可以点击playground来可视化的尝试操作tensorflow,随便试了一下,挺好玩: 使用如下语句进行安装:pip install tensorflowtensorflow近期发布了2.0预览版本,改动极大,在第4部分介绍。TensorFlow再这么完善下去,都可以不
步骤:数据处理:将数据喂给网络搭建网络模型Loss训练模型测试第一步 数据处理将数据集处理成FTRecord的标准格式(也可以是其它格式,详见下面的参考链接)将数据传给TensorFlowTensorFlow 读取自己的数据集数据存储形式如下:Train_TFRecords_00123
Train_TFRecords_00017
......数据存储地址TFRecordPath;用os.listd
公司在做机器学习或人工智能方面的东西哈,然后我协助同事搭建后台系统。tensorflow:https://tensorfl
原创
2022-09-08 11:00:14
53阅读
搭建和配置TensorFlow环境前言由于工作需要,近期准备深入学习和使用深度模型。前期调研了一番各大深度学习的开发框架,常用的有TensorFlow (Google), Pytouch (Facebook),Mxnet (Amazon),PaddlePaddle (Baidu), Caffe等。各有各的用户基础和功能特点。对于刚进该领域的新人,个人还是觉得选择用户基础大,背后厂牌硬的框架比较安全
通过这篇博客,你可学到怎么在tensorflow环境下搭建LSTM网络(这里包括单层与多层),同时使用matplotlib模块画图,通过训练完以后,把网络保存下来,以后再次打开网络就不需要再次训练网络,直接用即可。这里我会演示保存下来的网络怎么恢复以及使用保存下来的网络进行测试,就不要训练了。首先建立一个LSTM.py,代码如下:from __future__ import print_funct
前段时间在阿里云买了一台服务器,准备部署网站,近期想玩一些深度学习项目,正好拿来用。TensorFlow官网的安装仅提及Ubuntu,但我的ECS操作系统是 CentOS 7.6 64位,搭建Python、TensorFlow、Jupyter开发环境过程中遇到很多问题。这里将具体步骤分享给大家,可以少走很多弯路。第一步 安装anacondaAnaconda在linux依然功能强大,管理工
我们把训练模型建立以后,投入到生产环境的时候,问题来了,一张图片进行预测,tensorflow启动加载模型在进行需要跑好几秒钟,才能得出一个预测值。这在真实环境中是不允许的。因为太慢了,为了找出原因所在,开始了如下的探究和测试。调试确定问题以google-inception模型中的test.py为例,先在测试模型中记录两个时间,最后相互减就得出所用时间,确定在哪一个环节耗时严重。# coding=
初衷:由于系统、平台的原因,网上有各种版本的tensorflow安装教程,基于linux的、mac的、windows的,各有不同,tensorflow的官网也给出了具体的安装命令。但实际上,即使tensorflow安装成功,还是会遇到需要安装其他辅助工具的情况,同时,换一台机器又要面临整个环境重新...
转载
2016-12-02 11:48:00
195阅读
2评论
1.安装Python环境:Anaconda是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项,其中就包含了Tensorflow所依赖的numpy、pillow等,若计算机已经安装官方版Python,建议卸载后安装Anaconda库。 官方下载地址:https://www.continuum.io/downloads各历史版本Anaconda下载
本地开发环境Pycharm搭建1. 安装完Anaconda之后,打开Anaconda Prompt2. 在打开的面板中依次输入conda create --name tf2.0.0rc1 python=3.7回车conda activate tf2.0.0rc1回车//pip install tensorflow==2.0.0rc1 (上面的太慢,使用清华的...
原创
2021-07-09 15:06:41
317阅读
tensorflow
转载
2022-09-17 15:49:32
88阅读
在日常的生产应用中,我们需要将训练好的神经网络模型部署到生产环境中,并能够以服务的形式提供给生产应用。基于TensorFlow编写的神经网络模型部署有两种方案可以选择:一是基于flask等Web框架;而是基于TensorFlow Serving。本文将介绍使用TensorFlow Serving进行模型部署方案。 TensorFlow Serving框架简介 TensorFlow S