有时候我们会用帕累托图(Pareto chart)来展现数据的两个指标(一个频数,一个率),这种情况就需要用双坐标来展示。ggplot2的作者Hardley似乎也不太认同双坐标的存在。那么,有时候回归基础包,也是另一种尝试。花了点时间用基础包画了下面这张帕类托图,左侧纵坐标代表病人例数,右侧表示死亡率,横坐标是一种疾病严重程度评分。那么我们来看一下这么一张图是怎么一步步画出来的吧。image.pn
转载 2023-11-21 13:16:16
54阅读
R语言求概率分布R一个很方便的用处是提供了一套完整的统计表集合。函数可以对累积分布函数P(X≤x),概率密度函数,分位函数(对给定的q,求满足P(X≤x) > q的最小x)求值,并根据分布进行模拟。在R中,根据某种分布生成随机序列的函数如下:在统计学中,产生随机数据是很有用的,R可以产生多种不同分布下的随机数序列。这些分布函数的形式为rfunc(n,p1,p2,...),其中func指概率
转载 2023-07-19 20:32:25
358阅读
一、R语言独立性检验R提供了多种检验类别型变量独立性的方法,这里描述的三种检验分别为卡方独立性检验、 Fisher精确检验和Cochran-Mantel-Haenszel检验。1、卡方检验可以使用chisq.test()函数对二维表的行变量和列变量进行卡方独立性检验,具体的数学问题不在这里讨论,只需知道问题的原假设是两者独立,结果的P-值小则代表拒绝原假设,即存在一定的关系;当P-值比较大时代表接
转载 2023-11-21 12:51:48
187阅读
数值和字符处理函数1. 数学函数函数功能abs(x)绝对值sqrt(x)平方根ceiling(x)返回不小于 x 的最大整数floor(x)返回不大于 x 的最大整数trunc(x)向 0 的方向截取整数,左截取round(x, digits = n)将 x 舍为指定位数的小数signif(x, digits = n)将 x 舍入为指定的有效数字位数log(x, base = n)\(\log (
转载 2023-05-24 15:59:32
419阅读
R语言的各种统计分布函数1.二项分布Binomial distribution:binom 二项分布指的是N重伯努利实验,记为X ~ b(n,p),E(x)=np,Var(x)=np(1-p) pbinom(q,size,prob), q是特定取值,比如pbinom(8,20,0.2)指第8次伯努利实验的累计概率。size指总的实验次数,prob指每次实验成功发生的概率 dbinom(x,size
* * * * 四分位差(quartile deviation) 对顺序数据离散程度的测度 也称为内距或四分间距 上四分位数与下四分位数之差 QD = QU – QL 反映了中间50%数据的离散程度 不受极端值的影响 用于衡量中位数的代表性 未分组数据—箱线图(box plot) 用于显示未分组的原始数据的分布 箱线图由一组数据的5个特征值绘制而成,它由一个箱子和两条线段组成 其绘制方法是: 首先
这个问题涉及马蹄蟹研究的数据。研究中的每只雌性马蹄蟹都有一只雄性螃蟹贴在她的巢穴中。这项研究调查了影响雌蟹是否有其他男性居住在她附近的因素。被认为影响这一点的解释变量包括雌蟹的颜色(C),脊椎状况(S),体重(Wt)和甲壳宽度(W)。数据文件:crab.txt。我们将首先拟合仅具有一个自变量:宽度(W)的泊松回归模型 估计的模型是:$ log( hat { mu_i})$
R语言中统计分布和模拟前言  很多应用都需要随机数。像interlink connection,密码系统、视频游戏、人工智能、优化、问题的初始条件,金融等都需要生成随机数。但实际上目前我们并没有“真正”的随机数生成器,尽管有一些伪随机数生成器也是非常有效的。目录 1. 概率统计分布概述 2. 随机函数模拟介绍 3. 密度函数模拟介绍 4. 分布函数模拟介绍 5. 分位数函数模拟介绍 6. 函数模拟
转载 2023-08-11 21:03:04
216阅读
帕累托图以Vilfredo Pareto命名的Pareto图表是一种同时包含条形图和折线图的图表,其中各个值按降序由条形表示,累计总数或者累计百分比由直线表示。问题定义:想了解各个产品的销售额,并找到营销销售额的关键产品。解决方案:针对这个问题,可以采用帕累托可视化分析,非常直观有效地解决这个问题。R语言绘制帕累托图。参考代码:library(pacman) # R包管理器 p_load(qcc)
转载 2023-05-23 12:27:07
455阅读
前天在天津医科大学做生物信息学分享的时候,提到了小伊老师的统计学课程,不过昨天航班晚点,来不及整理分享回答大家的疑惑,所以今天才出这30个题目。生信五周年-天津站统计学是一门很深的学问,这里仅仅是出题帮助大家熟练使用R语言来学习统计学知识需要掌握R内置数据集及R包数据集内置数据集:https://mp.weixin.qq.com/s/dZPbCXccTzuj0KkOL7R31gairway 数据集
转载 2023-06-25 08:36:56
406阅读
4. 因子        因子提供一种简单而又紧凑的形式来处理分类数据。因子用level来表示所有可能的取值。对于数据集中取值个数固定的分类数据,因子特别有用,图形函数和汇总函数就充分利用了因子这种优点。        R软件内部以数值编码方式来存储因子值,这
转载 2023-06-25 15:24:18
178阅读
首先是试验设计5个人,发150次红包,每次50块,为了排除其他变量的干扰比如人品等因素,每抢30次调换一下顺序。然后对数据进行统计。第一步对数据可视化展示,观察数据的规律因为没有原始数据,看完整个视频后根据毕导总结的规律模拟数据 数据的基本规律是 第一个抢红包的金额符合0.01~20的均匀分布 第二个抢红包的金额符合0.01~24.99的均匀分布 第三个抢红包的金额符合0.01~33.32的均匀分
在我们的数理统计课程中,已经看到了大数定律(这在概率课程中已经被证明),证明给出一组i.i.d.随机变量  ,其中有为了直观地看到这种收敛性,我们可以使用> for(i in 1:20)B\[,i\]=mean_samples(i*10) > boxplot(B)也可以直观地看到边界  (用于中心极限定理,获得极限的非退化分布)。我们一直在讨论经
    研究WSN空间覆盖能力的论文或多或少会假设随机部署的节点位置是服从柏松点过程(Possion Point Process,PPP)的,刚接触到这个概念也是挺懵了,之前学过随机过程、排队论都是讲的一维上的Possion Process,而二维平面上的PPP如何实现呢?在许多论坛上搜索后,终于找到实现二维PPP的代码实现,原来有个大牛Adrian Baddeley集结了一帮
转载 2023-08-31 16:20:12
87阅读
什么是正太分布检验? 判断一样本所代表的背景总体与理论正态分布是否没有显著差异的检验。方法一 概率密度曲线比较法 看样本与正太分布概率密度曲线的拟合程度,R代码如下:norm_expression <- function(x) (1/sqrt(2*pi))*exp(-0.5*x^2) #curve(norm_expression, -4, 4, col="red") #标准正太分布概率密度曲
转载 2023-06-21 20:32:14
231阅读
R语言中,要查询f分布的具体值可以使用`qf()`函数。f分布是一种用于比较两个总体方差是否相等的概率分布,通常用于方差分析等统计推断中。 下面我们来详细介绍如何使用`qf()`函数查询f分布的具体值。 ### 1. 导入f分布的概率密度函数 在R语言中,我们可以使用`qf()`函数来查询f分布的具体值。首先需要导入`stats`库,该库中包含了f分布的概率密度函数。 ```R libr
原创 2024-07-06 04:19:04
247阅读
        R语言是从贝尔实验室的S语言演变而来的,基于S语言开发的商业软件Splus,可以方便的编写函数、建立模型,具有良好的扩展性,取得了巨大成功。1995年由新西兰Auckland大学统计系的Robert Gentleman,Ross Ihaka,Bill Venables编写了一种能执行S语言的软件,并将该
转载 2023-08-31 08:30:04
104阅读
目录一、前言Fixed-effects models、Random-effects models、Mixed-effects models。二、ANOVA使用的前提假设与假设检验三、ANOVA的计算原理四、事后检验与交叉图:五、R语言进行分析的完整例子:六、结果一、前言今天来说一说概率论或者统计学中常用的一种检验方式,方差检验ANOVA.根据定义:方差分析(ANOVA)是一组统计模型及其相关估计程
10.1 函数的定义> name <- function(arg_1, arg_2, ...) expression expression是一个R表达式(通常是表达式语句组),并使用参数arg_i来计算出一个数值,表达式的值就是函数的返回值。函数调用的形式通常都是name(expr1,expr2,...)10.2 定义新的二元操作符可以将函数定义为新的二元操作符: > 
转载 2023-06-14 23:50:03
155阅读
方差分析是由英国著名统计学家:R.A.Fisher推导,也叫F检验,用于多个样本间均数的比较(分析类别变量、有序变量)。当包含的因子是解释变量时,关注的重点通常会从预测转向组别差异的分析。方差分析是一种能使多因素(多组间)检验变得简洁的一种检验方式,它能同时考虑所有的样本,不仅能使检验过程变得简洁还能排除因两两检验可能造成的错误累积的概率。这里学习方差分析最简单的部分——单因素方差分析。一、方差分
  • 1
  • 2
  • 3
  • 4
  • 5