似然“似然”是对likelihood 的一种较为贴近文言文的翻译.“似然”用现代的中文来说即“可能性”。 似然函数设总体X服从分布P(x;θ)(当X是连
原创
2023-11-07 14:03:54
220阅读
似然函数(Likelihood function、Likelihood) 在数理统计学中,似然函数是一种关于统计模型中的参数的函数,表示模型参数中的似然性。似然函数在统计推断中有重大作用,如在最大似然估计和费雪信息之中的应用等等。“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性”和“或然性”或“概率”又有明确的区分。概率用于在已知一些参数
# MySQL如何将数据按照自然数排序
在数据库管理中,数据的排序是一个常见但重要的任务。通常情况下,MySQL提供的排序默认是基于字符或数字的自然顺序。然而,许多情况下,我们希望将数据按照自然数顺序进行排序,这与字符串排序的结果可能大相径庭。本文将探讨如何使用MySQL实现自然数排序,并结合一个实际示例来展示其应用。
## 1. 自然数排序的概念
自然数排序是指按照数字的数值大小进行排序,
”这种事件,我们可以问硬币落地时十次都是正面向上的“概率”是多少;而对
转载
2023-08-11 15:47:21
550阅读
020.ht
转载
2017-05-01 16:44:00
1810阅读
2评论
一、引入 极大似然估计,我们也把它叫做最大似然估计(Maximum Likelihood Estimation),英文简称MLE。它是机器学习中常用的一种参数估计方法。它提供了一种给定观测数据来评估模型参数的方法。也就是模型已知,参数未定。
在我们正式讲解极大似然估计之前,我们先简单回顾以下两个概念:概率密度函数(Probability Density function),英文简称pdf似然
转载
2023-06-29 11:09:04
251阅读
你在论坛上和人针砭时弊,痛斥腐败,向往民主,然而这些并没有什么卵用,你无力改变什么。你和人交流新上市那
转载
2015-07-08 07:01:00
94阅读
目录逻辑回归(对数几率回归)1.广义线性模型2.逻辑回归的假设3. 逻辑回归的代价函数为什么LR中使用交叉熵损失函数而不使用MSE损失函数?3. 极大似然估计4. 利用梯度下降法求解参数w4.1 三种梯度下降方法的选择5.逻辑回归优缺点:参考资料:逻辑回归(对数几率回归)逻辑回归是一种分类算法,不是回归算法,因为它用了和回归类似的思想来解决了分类问题。一句话总结逻辑回归:“逻辑回归假设数据服从伯努
转载
2024-08-09 11:33:08
28阅读
One of the most fundamental concepts of modern statistics is that of likelihood. In each of the discrete random variables we have considered thus far,
转载
2016-03-01 18:53:00
194阅读
2评论
在机器学习算法中,你能经常看到极大似然估计这个词语。比如在对逻辑回归求解全局最小值的时候就需要用上极大似然估计。极大似然估计是机器学习算法中必须掌握的一个知识点。极大似然估计是什么意思?首先,根据字面上来看,极大和估计都比较好理解,极大即最大化,估计即大约计算出来的样子。那么似然是什么意思呢?似然,即(likelihood),牛津词典的解释为可能性(同义词为probability)。所以极大似然估
转载
2024-04-22 23:02:30
32阅读
极大似然估计方法(Maximum Likelihood Estimate,MLE)也称为最大概似估计或最大似然估计,其作用是通过采样的样本分布去估计整个数据中的某些参数。简单点说,现在已知一个数据的概率分布,这个概率分布中有一些参数是未知的,那么我们如何通过采样的几个样本来估计这些参数呢,这个时候就要使用极大似然估计。其实极大似然估计很多时候和我们的直觉是一样的,比如有一个系统会随机输出1-6的数
转载
2024-05-07 19:03:53
42阅读
1、什么是逻辑回归?逻辑回归是一种分类算法,不是回归算法。它利用了回归的思想来解决分类问题。总结:逻辑回归假设数据服从伯努利分布,通过极大似然函数的方法,运用梯度下降来求解参数,最终达到数据二分类的目的。假设有一个二分类的问题,输出结果为{0,1},而线性回归模型产生的预测值是输出的都是实数值,我们希望有个越阶函数来说帮助我们把z值实现0/1之间的转化。使得:但是该分段函数不连续,希望有一个单调可
以前上学的时候对似然函数什么的一看到就头疼,最近专门研究了一下,写一下自己的总计,后序会是与似然函数先骨干的GMM和HMM的总结。经典理解: 设总体的概率模型为F(x|θ)。为了说明的方便,暂假定只有一个未知参数,X1,X2,……,Xn是容量为 n 的随机样本(大写X),实际观测到的样本观测值(小写x)为 Xl=x1,X2=x2,……,Xn=xn 。把同各Xi对应的密度函数或概率函数
转载
2024-05-13 16:10:09
48阅读
学习内容
应用似然比检验 (LRT) 进行假设检验
将 LRT 生成的结果与使用 Wald 检验获得的结果进行比较
从 LRT 显著基因列表中识别共享表达谱
似然比检验在评估超过两个水平的表达变化时,DESeq2通常,此测试将产生比单独的成对比较更多的基因。虽然 LRT 是对因子的任何水平差异的显着性检验,但不应期望它与使用 Wald 检验
转载
2024-08-05 21:41:25
92阅读
文章目录参考资料1. 最大似然估计1.1 原理1.2 示例2. EM算法2.1 原理2.2 示例 参考资料统计计算中的优化问题1. 最大似然估计1.1 原理统计中许多问题的计算最终都归结为一个最优化问题, 典型代表是最大似然估计(MLE)、各种拟似然估计方法、 非线性回归、惩罚函数方法(如svm、lasso)等。最大似然估计经常需要用最优化算法计算, 最大似然估计问题有自身的特点, 可以直接用一
转载
2024-08-09 12:59:39
48阅读
例子1:抽球举个通俗的例子:假设一个袋子装有白球与红球,比例未知,现在抽取10次(每次抽完都放回,保证事件独立性),假设抽到了7次白球和3次红球,在此数据样本条件下,可以采用最大似然估计法求解袋子中白球的比例(最大似然估计是一种“模型已定,参数未知”的方法)。当然,这种数据情况下很明显,白球的比例是70%,但如何通过理论的方法得到这个答案呢?一些复杂的条件下,是很难通过直观的方式获
转载
2023-11-09 00:22:09
73阅读
。一、简介最大似然估计法 是费希尔(Fisher, R. ...
原创
2021-06-30 15:00:41
1459阅读
极大似然估计 标签(空格分隔): 数学 最大似然估计(maximun likelihood estimate)是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。这个方法最早是遗传学家以及统计学家哦罗纳德·费雪爵士在1912至1922年间开始使用的。 似然是对likelihood的一种较为贴 ...
转载
2021-07-29 20:13:00
338阅读
欢迎点击「算法与编程之美」↑关注我们!本文首发于:"算法与编程之美",欢迎关注,及时了解更多此系列文章。
原创
2022-03-02 11:46:13
421阅读
贝叶斯决策我们都知道经典的贝叶斯公式:p(w∣x)=p(x∣w)p(w)p(x)p(w|x)=\
原创
2022-12-04 07:45:00
651阅读